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Abstract. A family of quasicrystals of dimensions 1. 2. 3, 4 govemed by the mt lattice 
Ea is constructed. The use of the icosian ring, found in the quaternions with coefficient9 in  
Q(&, allows simultaneous interpretation of the construction both in physical space and as 
a result of the smdard 'cut-and-projection' method in double dimension lwsians are seen to 
provide a natural CO-Ordination scheme for ulese quasicrysutls. Nested sequences of quasicrysutls 
form systems whose symmetries are all derivable from in8alionai and reflective symmetries 
directly related to the arithmetic of the imsians. The use of Coxeler diagrams clarifies the' 
amazing relationship of Es and quasicrystal symmetries and leads U) the fundamental chain 
En 3 D6 3 Ad J ,A ,  x A I  that underlies live-fold s y m n e q  in quasicrystab. Dewmposition 
of quasicrystals into concentric shells and a counting fomnla for the cardinalities of these shells 
is discussed. 

1. Introduction 

The six independent vectors of the reciprocal space required in the analysis of diffraction 
pattems of three-dimensional quasicrystals displaying icosahedral symmetry are no 1onger.a 
matter of contention amongphysicists. More contentious is whether or not this fact demands 
a hyperspace theory formulated in higher than three-dimensional spaces or perhaps some 
amalgamation of a three-dimensional direct space and six-dimensional reciprocal space. 

In this article we develop a theory that allows the three- and six-dimensional worlds to 
live together simultaneously in the same space; it is only a matter of interpretation which 
of the two is being discussed. 

Our work is based on the root lattice E8 and the largest of the non-crystallographic 
Coxeter groups H4, together with a ring of quatemions with coefficients in a quadratic 
extension of the rational numbers (the icosians). Inherently it is a four-/eight-dimensional 
picture with standard three- and two-dimensional quasicrystals living subsystems inside 
it. It brings together various ideas found in the literature, notably the series of articles 11-41 
of the Tiibingen group analysing the projections from A d  and Da root lattices, the work 
of [5] where the connection between the Eg root lattice, icosians and quasicrystals was 
first made, and the recent article [6,7] where the Eg shelling problem is first exposed. An 
important revelation was the ingenious and visually appealing realization of the symmetry 
group H4 inside the Weyl group of E8 given in [SI. 

The role of the ring of icosians in the theory of non-crystallographic Weyl groups 
goes back to [9]. Its connection with Eg is pointed out in [lo]. There are several 
passing references to icosians in the quasicrystal literature, hut it seems to us that their real 
significance has not so far been realized. They are inherently simultaneously both four- and 
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eight-dimensional and offer a natural and concise coordination scheme for all icosahedral 
quasicrystals coming from the 0 6  cut-and-project procedure. In addition they have a 
multiplicative and arithmetic structure that allow us to multiply and otherwise manipulate 
quasicrystals in a natural way. Apart from making the entire quasicrystal symmetry, both 
isometrical and infiational, completely transparent, we feel that there is still much to be 
learned about the meaning of these remarkable structures. 

In section 2 notation is fixed and some preliminary facts are recalled. We introduce the 
quadratic extension IF = a(&) of the rational numbers Q and the space of quatemions 
Hr with coefficients in F. Apart from the standard F-valued norm on HF, note the two 
positive-definite rational-valued norms also defined in &. These norms play a decisive role 
in the sequel. 

In section 3 a 1-1 correspondence between the simple roots of Ea and certain quatemions 
is fixed (figure 1). This is the first crucial technical step of the article. The correspondence 
singles out the 120 icosians and their 120 ?-multiples; t = (1 + d ) / 2 .  The icosian ring, 
generated by these 240 elements, is to be the stage on which the quasicrystals are defined 
in section 5. The advantage of our formulation of the Ea-icosian correspondence is that 
it allows us to read off many important facts directly from the Coxeter diagram of Ea. In 
particular, the Da. Ad, and several other quasicrystals are straightforward particular subcases 
of those of Ea. 

The inflational symmetry T ,  as introduced in section 4, is the defining symmetry of 
quasicrystals. In HF it is simply multiplication by 5. In the Eg root lattice it determines 
quasicrystal eigenspaces. This is the second crucial step in this article. 

In section 5 the quasicrystals Er are defined in QIIF and in the four-dimensional 
eigenspaces of T (third crucial step). The parameter r is the radius of the acceptance 
domain which is taken here to be a sphere of appropriate dimension. Since in this article 
we are not concemed with the problem of quasiperiodic tiling (a quasicrystal consists here 
of points-vertices of some tiling), acceptance domains of more complicated shapes would 
offer only a minor variation to our examples (see also remarks in sections 8 and 10). New 
are the composition rules for our quasicrystals. An example of an A4quasicrystal is shown 
in figure 3. 

The Coxeter group H4, described in section 6, is the most important finite group of our 
problem. Its generating reflections are read off the Ea diagram on figure 1, as well as the 
generators of its important subgroups H3, the binary icosahedral group, and Hz. the dihedral 
group of order IO (fourth crucial step). 

In section 7 we show that inflational and H4 symmetry account for all symmetries of 
the quasicrystal system E'. 

In section 8 quasicrystal systems in general are defined. These consist of infinite 
hierarchies of partially ordered quasicrystals all sharing the same symmetry group. The 
Eg subcases corresponding to 06. A g ,  and 2A1 quasicrystals are discussed as examples. 

In section 9 we introduce the shelling problem. If we decompose the Ea root lattice as a 
sequence of concentric spherical shells then we simultaneously 'shell' the quasicrystal Er .  
The properties of these shells (in particular their cardinalities) constitute the shelling problem 
first formulated by Sadoc and Mosseri [6,7]. We announce here an explicit formula for 
these cardinalities. This formula, obtained by Moody and Weiss [ll], corrects a conjectured 
formula given in [61. Of particular interest is the direct appearance of the arithmetic of the 
icosian ring. 

R V Moody and I Patera 

Structural lattice propeaies of the icosian ring are described in the appendix. 
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2. Notation and mathematical preliminaries 

Let F = Q + Q& denote the extension of rational numbers Q by 8 with the standard 
automorphism 

':P+F ( a + b f i ) ' = a - b f i .  ( i1)  

Introduce the notation r = ;(I + 8) and u = k(1 - 8), and note the identities 

a + r = l  ur = -1 (2.2) 

and their consequences u2 = I + U and r2 = 1 + r which we use often. The ring 
Z [ r ]  = Z + Zr is the ring of integers of IF. 

Let Q = Q ( E d  denote the mot lattice of the simple Lie group Es, and let A C Q be 
the set of roots of ER. The usual symmetric bilinear form on Q with values in the integers 
Z is denoted by (. I .) and assumed to be normalized so that (or I (U) = 2 for every root 
of Es .  The root lattice Q together with (. I .) can be considered as a lattice in Euclidean 
space R'. Then we can consider also 

V = Q-span of Q 

Vp. = F-span of Q 

( 2 . 3 ~ )  

(2.36) 

which are the eightdimensional spaces in R* generated by A over Q and F respectively. 
The bilinear form (. I .) is Q-valued on V and F-valued on Vp.. 

The standard quatemionic algebra over R is denoted by W, with the conjugation written 
as overbar: 

- : RU+ W (al  +iaz + ja3 +ka4) =a ,  - ia2 - ja3 - ka4. (2.4) 

Quaternions al + ia2 + jas  + ka4 will often be written as the 4-tuples (a,, az, a3. a4). The 
elements of 

No := Iwi + R j  + Rk 
are the pure quaternions characterized by the identity f = -x.  

Inside H we find the IF- and Qquatemion algebras defined as 

RUp. := F + Fi + F j  + Fk W, := Q + Qi + Q j  +,Qk 

and the quatemion rings 

Wzrrl := Z[rl + Z[rli + ZDI j  + Z[rlk 
Hz := ( a  +hi +cj  + d k  1 a,  b,c, d E Z or a, b, c , d  E $+Z} 

with tiasis 4(1 + i + j + k), i, j ,  k over Z. 
We extend the field automorphism ' on F to a Q-linear automorphism on IBIF by 

(a, h, c ,  d)' = (a', b', c', d') . (2.5) 
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The standard symmetric bilinear form (inner product) on H is given by 

x . y = + { X j  + $1. (2.6) 

In terms of coordinates this is the standard dot product on Et4. In particular, we have the 
quaternionic norm of x ,  

N ( x )  := 1x12 := x .  x = x i  (2.7) 

whose values on HF (resp Hz) are in F (resp Z). 
Next we introduce a second bilinear form, ( . )T, on Kw with values in Q by combining 

with the @linear map x H (x) ,  from F -+ Q defined by (a + bs), a. Thus 

( x .  Y ) r  = 0 if x . y = a + r b .  (2.8) 

It is called the rationalform relative to 5. Similarly, one introduces the rational form relative 
to U ,  replacing I by q in (2.8). Correspondingly one speaks of rational norms (x . x)< and 
(x  ' X L .  

Any element x E WF can be written uniquely as x = ql + sqz, where ql,q2 E W Q  
Then we have 

Consequently, we have 

((a + 542) . (41 + ~ q 2 ) L  = + M q d  (2.10) 

which shows that the rational norm of (2.8) on Wp is positive-definite. In the same way the 
rational norm (x  . x) ,  is also positive-definite on Wp 

3. The icosian ring and the Eg root lattice 

The following 120 unit quatemions: 

(f 1, 0, 0, 0) and all permutations 
q&l ,k l ,&l ,+ l )  2 

I 2(0, f l ,  &U, &I)  and all even permutations 

(3.1) 

called icosians, form a finite group I ,  the group oficosians, under the standard quaternionic 
multiplication [12]. The group is isomorphic to the binary icosahedral group. 

The icosian ring, denoted by 1, is the Z-span of 1. Note that 

(3.2) 

and similarly U E I. Clearly = 1 but notice that I' # H (see the appendix for more on 
this). 

I 5 = ?(I, 0, U ,  1) + $(I, 0, -U, -1) E II 
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Figure 1. The mapping 1211 : A -+ I U r l  given in terms of the mapping of the simple 
mots of Es. 01 = -r,O.’-l), =al = +(l,-rZ,O, -I), az = f(0, -U, -r. 1). 
ra2 = 5(0. I .  -r2, I), as = ?(o, I ,  -u;-z), T O )  = $CO. T ,  1, -rz), nq = $(o, -1, - 0 , ~ ) .  

rad = f(o. --T,I. 9). 
1 I 

There is a @linear isometric isomorphism nlI : V N Hp. with (. 1 .) used on V and 
2( . ) r  used on WF. Under the isomorphism, 240 roots of Es are mapped into the 120 
icosians and their r-multiples. We have 

A -, I U r l  (3.3) 
The explicit mapping rill set up in figure 1 realizes the isomorphism. For the rest of the 

~ I I  : (a I B )  = 2(n11(a) . ZII(B))~ . 

paper we fix the notation 

= q(ad az = q(a2) a3 = nII(a3) ra4 = nll(a4) 

used in figure 1. 
As an example, let us verify the following property of E8 roots: 

- 1 = (as I ad = 2(Rll(a5) ‘ nll(OIS))r. 

Using a3 and a4 from figure 1 we have 

2(irll(as) .n~l (as) )~  = (sa3 .adr = i(r(0.1, -U, - 5 ) ~ .  (0, -1, -U, r)lr 
= $(r(-t + u2 - s2)), = -I .  

Another isometric isomorphism nl : V “ ~ W p  is built by replacing r by U in *e 
definitions above. More precisely, one has 

Thus if ( q ( x )  .nil(y)) = a  + 56,-then (nl(x) .nl(y)) = a  f u b .  

matrix 
Often it is practical to choose in V the basis of simple roots, writing ai as the column 

(3.5) 
where I is in the ith place. Relative to such a basis, the mappings nII and ~1 are given by 
the 8 x 4 matices 

ai = (0,. . . ,o, 1,o.. . ., 0 ) T  

/-U 0 0 0 0 0 1 o \  

/ - r  0 0 0 0 0 1 o \  
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4. Inflation 

The bijective mappings xII and nl are essential ingredients of defining quasicrystals. Here 
we describe some of their properties. 

The mapping rill is determined by mapping four simple root vectors into certain icosians 
and the other four simple roots into 7-multiples of the same icosians (cf figure 1). The 
rational forms (x  . y)r and (x . Y ) ~  guarantee that the required angles and lengths of Es 
roots remain the same in EU, as they are in V. 

Now we want to construct a Q-linear map T : V + V which mimics in V the 
multiplication of icosians by T, namely 

R V Moody and J Patera 

R I I ( T X )  = 7iru(x) for every x E V . . (4.1) 

We get T by setting 

Tal = a, T a l  = a,  f a7 

Taz = a6 

Tas = a5 

Ta6 = a2 + a6 
Ta5 = q +as 

Tag = q Tu4 = as f a d .  

Obviously from (4.2) we have T 2  - T - 1 = 0 and T has two distinct eigenvalues, 0 and 
T, each occuring four times. We note also that if x E V and .E := q ( x )  satisfies N(?) E Q, 
then we have 

(x I T x )  = 2(i . TZ), = 2(rN(,t)), = 0.  (4.3) 

T is called the inflation map on V relative to q. 
Let us now extend T ,  HI. HI by IF-linearity to VF. Thus we have 

f : v F +  VF 511 : VF --f 51 : vz --f EF (4.4) 

V, = (i: - U)VF e (i: - r)VF 

as well as the extension of (. I .) to VF x VF by E-bilinmify. The space VF splits as 

(4.5) 

into the direct sum of four-dimensional eigenspaces of ‘f. 

V to V,, the maps ?iii and 31 get non-trivial kernels 

V, := kenSll = {(f - r ) ( x )  I x E VF] = ( ( T  - 7) (x )  I x E V ]  (4.6~) 

Vr := ker?i = I(? - U ) ( X )  I X E VF] = ( ( T  - U ) ( X )  [ X E V }  (4.6b) 

which are the eigenspaces U and r of ? of dimensions 4 over IF. The second equalities in 
(4.6) can be seen by observing that all the sets in question have Qdimensions equal to 8. 

The map xli : V -+ H~IF is 1-1 (a Q-linear isomorphism). However, when we enlarge 

Let us prove that under (. .) one has 

kenill I k e e l .  (4.7) 
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We have for all x ,  y E V 

( T x - r x  I T y - o y )  = (Tx  I T y )  - t ( x  I T y ) - u ( T x  I y ) + u r ( x  I y ) .  (4.8) 

Since T x ,  T y ,  x .  y E V ,  we can work out these scalar products using (3.3): 

2 -  - (TX  I T Y )  = z(rirll(x) . r?ll(r)), = z(r  (x  Y ) ) ~  

where i := q ( x )  and j := q ( y ) ,  

(x  I Y y )  = Z ( i .  S F ) ,  = 2(r (2 .  y)) ( f x  I y )  = 2(rf .  = 2 ( r ( i .  j ) ) r .  

Thus (4.8) becomes 

~ { ( r ~ ( i . ~ ) ) ~  - r ( r ( i . ~ ) ~ - o ( r ( i . j ) ) ~  -(i.Fh}. (4.9) 

2[ ( r 2 ( i .  j )  - r ( i .  i) - (i .  j ~ ) ~ ]  = O 

From U + r = 1 and the linearity of the map a + br H (I, we have 

(4.10) 

due to r2 - r - 1 = 0. 

of V or Vp. In order to ‘see’ 
The maps 511 and 51 look like orthogonal projections. However, Wp is not a subspace 

For any x E V .  we have the eigenspace decomposition 
as a projection, we do the following. 

(4.11) 

Observe that 

irll(xn)’ = ‘ill( ~ ) = 0 

Thus 511 projects i, H 2 and x, H 0, and in the same way 
XT H 0. 

length of  the component that projects onto it. In fact 

(4.12) 

: x, H rS,(x) and 

The length of the image of a vector of V under q is, up to an overall scaling, the 

rx - T x  
and hence %ll(xr) = 2 .  . 



and in precisely the same way we find 

(xo I &) = C ' ( H l ( X )  ' H l ( X ) )  

where the scaling constants in (4.13) and (4.14) are given by 

c = 3 ( 2 + u )  . c ' = + ( ~ + r ) .  

VF --+ (VFL = v, 
v, + (V& = vu. 

Now consider the orthogonal projections 

P T  : 

Pe : 

Then we have the commutative diagrams 

(4.14) 

(4.15) 

(4.16~) 
(4.16b) 

(4.17) 

and 511 and 51 are dilations with scaling factors c and c' respectively. In this way HI,  and 
H I  mimic the projections pr and pc.  

In the light of this discussion in we make an essential change in our viewpoint. Identify 
(as Q-spaces) V and Wp via the isometry H I I .  Then as soon as we view x E V = N H ~  as 
being in the fourdimensional JF-space we are looking at its projection by q(x) ,  while x' 
is its projection H ~ ( x )  (see (3.4)). 

An example where the result of a ~11-mapping can be shown in two dimensions is found 
in figure 2. 
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Thus the two projections that we will use as the basis of the Es cut and project scheme of 
forming quasicrystals are xi1 and xi. In view of what we have said, they have an extremely 
simple and natural icosian interpretation. The scaling constants (4.15) that appear in relating 
this new picture to the usual one, which would involve pr  and po, amount to rescaling of 
the acceptance domain and the projected image, and are quite inessential. 

5. Quasicrystals 

For each r > 0 we define the quasicrystals Er E H and k' E H as 
xr := { x  E I I ~ ( x ' )  -= r Z ]  = {x  E I I lx'l < r ]  
k' := { x  E I I Ix'I < r ) .  

(5 .1~)  

(5.lb) 

Let us point out several properties of the definition. It builds a four-dimensional 
quasicrystal entirely in 4-space and without reference to eight-space or the E8 root lattice. 
Restricting the choice of x in the definition (5.1) to pure quaternions from I, we get a 
three-dimensional quasicrystal Xor which again is built without reference to the underlying 
sublattice 0 6  (cf figure 1) of  the^ E8 root lattice. The process of changing dimensions is 
now relegated to the pair of fields F and Q, the crucial ingredients being the involution 
(2.1) and the quatemionic norm (2.7). 

It is immediately apparent from the definition that for all r ,  s > 0 

Furthermore 

(5.2) 

(5.3) 

(5.4) 

All these quasicrystals in (5.2X5.5) can be replaced by their closures kr E 1. 
An important aspect of this definition is the fact that Er is clearly invariant under the 

group H of 14400 symmetries U H sur-],  U H sW', s. f E I (see (7.1) and section 6). 
The quasicrystal E' can be equivalently formulated as 

xr  := {nil(x) 1 x E Q, nL(x).  ni(x) c r Z )  r 0. (5.6) 

 if^ we pull everything back to the V side we may define 

Xb := {x ,  I n E Q, (x,, I x,,) < c'r'] C V, (5.7) 

using (4.15) and then by (4.12) 

ir,,: C L  -+ E'. (5.8) 

In this form Xr is seen directly to be formed by the cut-and-projection method when the 
acceptance domain is taken as a sphere of radius c'r2. Similar remarks apply to er. 

An example of a two-dimensional quasicrystal obtained using (5.6) is shown in figure 3. 
Note that figure 2 and figure 3 were obtained running the same computer program [13] for 
different values of r .  More about A4 quasicrystals and the choice of an acceptance domain 
is found in section 8. 
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Fwre 3. A circular window view of a planar quasicrystal E' showing pentagonal symmetry. 
The projenion q of fipre 2 is applied lo the points x of the Aq-rcot sublanice of the E8 rmt 
lattice provided one has ? r ~ ( x ) .  nlCr) < 25. 

Proposition I .  Let r > 0. 
(i) Er and EL are infinite. 
(ii) E r  generates Ii as a &module, E; generates V (as a Z-module). 
(iii) There exists a positive integer M such that for any U E V, there exists {xi I i = 

1, . . . , Mj c Eh so that U lies in the convex hull of the [xi] .  

Proof. Taking advantage of nl we prove the results only for E'. We begin by observing 
that if x E Er then I(rx)'l = Idllx'I < lnlr and so zx E Er-1r c E'. In the same way 
t - l x  E E". It follows at once that each set Er is non-empty, and then infinite, proving (i). 

0, Es contains a set of generators of II as a %module. 
Also for some positive integer k, rkE' c E'. Since tkII = 1 we see then that E' contains 
a set of generators of 1, proving (ii). 

In section 6 we will see that there is a reflection group H of order 14400 acting 
irreducibly on H that stabilizes 1 and each quasicrystal Er .  Thus if x E E' \ [O] then H@ 
is a set of at most 14400 points in E' that spans II and forms the set of vertices of a convex 
polyhedron P .  inscribed in the sphere of radius 1x1. Now clearly 

Fix r > 0. By (5.5) for some s 

(5.9) 

and (iii) follows. 0 
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The origin of the ring II is always a point of the quasicrystal Zr. The origin is the centre 
of symmetry of F r  (cf the example in figure 3) and is also the centre of the acceptance 
domain defined by the requirement N(x')  < rz. 

Let us fix a vector 0 E V = Wp, and let us call it aphason, and consider its projections 
0 and 0'. The quasicrystal X& is defined by 

E& := {x + 0 I x E I, ~ ( ( x  + 0)') < r'). (5.10 ) 

The qukicrystal E' of (5.1) is obtained as the special case 0 = 0. In general the origin of 
H does not belong to Z& and Xi has no centre of symmetry. 

The phason family of quasicrystals containing Z& has fixed r and 0 taking values from 
the proximity cell (or the Voronoi domain or Wigner-Seitz cell) I141 of the root lattice Q 
around the origin of V. 

M = ( m . . ) -  

6. The Coxeter group H4 

In this section we study certain subgroups of the Weyl group of E8 which are pertinent to 
the quasiperiodic structures in two, three, and four dimensions. 

The Weyl p u p  of Ea is generated by the reflections rl , . . . , rs in planes orthogonal to 
the simple roots U,, . . . , as. This leads to the description in terms of the identities 

2 3 1 3 2 2 2 2  
2 2 3 1 3 2 2 2 

" - 2 2 2 3 1 3 2 3  

W(E8) = (rl. r2, . . . , rg I (qrj)"j = 1) 

where mij is the matrix element of M given by 

1 3 2 2 2 2 2 2  f 3 1 3 2 2 2 2 2  

2 2 2 2 3 1 3 2  
2 2 2 2 2 3 1 2  \ 2 2 2 2 3 2 2 1  

or more succintly in terms of the Coxeter diagram 

(&la) 

(6.lb) 

(6.2) 

The Coxeter group H4. of order 14400, is defined abstractly by the presentation 

ff4 = ( R , ,  R ~ ,  R ~ ,  R~ I ( R ~ R ~ ) ' " ; ~  = 1) (6.3a) 

where now 

(6.3b) 
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or equivalently by the Coxeter diagram 

(6.4) 

Of importance here also are the obvious subgroups H3 and H2 of U4 whose diagrams are 

c d c  c% (6.5) 

respectively. The orders of these groups are 120 and 10 respectively. 

with the norm (2.7) is 
Let x E H with N ( x )  = 1. Then the Euclidean reflection in n (in the space W N R4 

(6.6) 

Now let x E A be a root which, when viewed in Np, lies in I .  Then T x  E A identifies 
with r x  E rI and (Tx I x )  = 0, see (4.3). Let r, and rTx be the reflections in V = IFTIIF 
with respect to (. I .). Let us see that we have 

2 u . x  
R, : U +  U -  - x = -xirx. 

x . x  

rTrrx = R, (6.7) 

in our identification of V and Wp under nil. Indeed, 

rr.,r,u = rrr(u - (U I x)x )  = U - (U I x ) x  - (U I T x ) T x  

= U - 2(u . x),x - 2(u .  r x ) , r x .  

If we put u . x  = p f q r ,  where p,q E Q, then ( u . x ) ,  = p .  (U. rx) r  = q .  and 

rTxr,u = U - Z(p + rq)x  = U - 2 ( u .  x )x  = R,u. (6.8) 

Thus for all x E I we have (6.7). 
Set 

H := (RI, Rz. R3, R4) (6.9) 

where 

RI := rlr7 R2 := r2r6 R3 := r3r5 R4 := r4rg. (6.10) 

In view of (6.7) these are reflections in Wp and it is easy to see that they satisfy the Coxeter 
relations (6.3). In fact these relations are obvious from the standard Coxeter relations (6.1) 
of the Weyl group of E s .  The only unusual one (in fact the key one!) is 

(R3Rd5 = (r3r~r4rg)~ = 1 (6.11) 

since rygrqrp, is a Coxeter element for the underlying Weyl group of the Lie group of type 
AI and hence has order 5. 
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The reflections R I ,  R2, R3, R4 are 
determined by the G r a ”  matrix G of the basis a, ,  0 2 ,  a3, Q under the quaternion inner 
product (2.6). Using the fact that 

Alternatively we can work entirely inside W. 

r iT -=ccos- 
2 5 

we see that 

G = -cos- ( m:,> 

(6.12) 

(6.13) 

where M = (mi j )  is given by (6.3). It follows by the well known result [15-17] that the 
reflective generators (6.10) of H satisfy the Coxeter relations of (6.3) and, indeed, 

H C H 4 .  (6.14) 

Furthennore since the matrix G is indecomposable the real representation of H on H is 
irreducible. The group H leaves invariant the F-space WF which accordingly affords an 
irreducible F-representation. 

We next consider the set of all E:-endomorhisms 4 of HB, defined for all s, t E I x I 
as follows: 

@(S,f) : U H sur-[ (6.15) 

Y : U H i j .  (6.16) 

The endomorphisms &.,) generate a group isomorphic to I x Z/((-l, -1)) which, together 
with y generate a group H’ of order (120)2. Since each reflection R, of (6.6) with x E I 
lies in H’, 

H’ = H Y_ H 4 .  (6.17) 

We also make note of the subgroup of H4 consisting of the 120 mappings generated by 

Y and @W s E I . (6.18) 

We observe that if x E I is a pure quatemion (2 = -2) then the reflection Rx of (6.6) 

R , :  u ~ x i j x - ~  (6.19) 

and that this reflection stabilizes the space WO of pure quaternions. In particular, the 
subgroup 

(6.20) 

takes the form 

( R 2 ,  R3, R d  cz H3 

stabilizes Ho. Since lH31 = 120, we obtain in this way the entire group (6.18). 
We now have three pictures of H4: the abstract version of (6.3), the subgroup H4 of 

the Weyl group of E8 given by (6.9). and the group generated by the endomorphisms (6.15) 
and (6.16) of W. In general we will identify these three groups and denote them by H4. 
When confusion is possible we will simply state which context we wish to view it in. 

There is one final point. For each x E I the reflection R, of (6.6) stabilizes I and so I 
is the non-crystallographic root system of type H4. The set (a,, a2, a3, aq} is a base for I in 
the sense of finite root system: each element of I is uniquely expressible as a non-negative 
or non-positive linear combinations of a,, az, a3, a4 [16,17]. 
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Proposition 2. The group H4 viewed as a subgroup of W(E8) is characterized by 
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H4 = (W E W(E8). I WT = Tw]. 

The spaces V, and V, afford irreducible representations of H4. 

Proof. H4 is generated by the elements R I , .  . . , R4 of (6.10). These are reflections when 
viewed as endomorphisms of W over IF and hence commute with T as endomorphisms of V.  

Conversely suppose that w E W(E8) commutes with T.  Then w acts as an IF-linear 
endomorphism on W and w ( I  U r I )  = I U r I .  Now we claim that wl = I .  Indeed, if 
x E I and w(x)  = ry  for some y E I then rx E t I  and w(rx) = r2y = y + sy. Since 
( y + r y  I y f r y )  = 4  we see that y + s y  6 I U t I .  Thus w I  = I .  

If I+ is a positive system for the root system I (see 116,171) then so is wI+ and hence 
there is a w' E H4 with w-lw' : I+ + I+. Then W-'W' preserves the unique simple system 
determined by I+. It is easy to see that w-'w' must effect a diagram automorphism and 
thus in our case of H4. W-'W' = 1, i.e. w = w' E H4. 

0 

(6.21) 

The statements about V, and V, follow by using the isomorphisms (4.17). 

7. Symmetries of quasicrystals 

The whole point of introducing H4 is of course that each quasicrystal C' is H4-invariant. 
Using (6.15) and (6.16) we have 

U E C ' + U E I  I U ' I < I  

+ U E 1 Is'u't'-lI < r for d l  s, t E 1 

In the same way U E C' =r fi E ~ Y .  
Considering the pure quasicrystals Zor and using (6.19) and (6.20) we see that Cor 

is H3-invariant. Thus the D6 subdiagram of E8 obtained from figure 1 by deleting nodes 
a1 and a7 is responsible for the icosahedral quasicrystals. The role of 0 6  in determining 
the icosahedral symmetry by the cut and projection method is due to [7-91. However, our 
acceptance domain is a ball in 3-space rather than a polytope. 

Quasicrystals C' and Cs are said to be isomorphic if there exists a Z-linear map 
4 : H + H so that $ ( E r )  = Ccs. 

Proposition 3. Let q5 : I[ + H be a Z-linear map and suppose that for some r, s > 0, 
+(Er) C V. Then 4 is a Z[r]-linear map. 

Proof. We have to prove that $(rx) = r4(x) for all x E II Using nl we may 
pull everything back to Q and assume that 4 : Q + Q is a Z-linear map with 
$(n[ ' (Z ' ) )  c ng'(Zs). Thus we have to prove that 4T = T4. 
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We observe that $ lifts uniquely to a Q-linear map on V and to an IF-linear map on Vp. 
We will also denote these maps by $. Consider the Q-linear map 

A : V, -+ V, U H ($U),, for all U E V .  (7.2) 

By assumption $(x;I(C')) c r;'(C."). Since for all x E Q, 

x E j - r i ' ( ~ ' )  w (xu I xc)  < c'r' (7.3) 

we have for all x E Q 

(7.4) 

are 

1 2  (.rm I x,) < c'rz ~ x ) ,  I (GXL < c s . 

As x, mns over Ch. the set [xu]  is bounded; hence also the sets [$(x,)).and 
bounded. Since also the set { $ ( x ) ~ ]  is bounded we have from 

@(x)c  = $(xo)e + $(.%)m (7.5) 

that the set ( $ ( x ~ ) ~ ]  is bounded; in short A(C.5) is bounded. 
According to the proposition 1, any point U of V, is expressible as a linear combination 

E:, cjxj, where cj 2 0, Ccj = 1, xi E Cb and M is independent of U. Then 
A(u) = E:=, c;A(xi) and we see that A(Vr) is bounded. Since A is linear we obtain 
A = 0. This proves that ($Vr)< = 0, i.e. ($V,) c V,. 

Now we can define the linear map f : V --f V by 

$((T  -ob) = (T - d f ( U )  (7.6) 

(since T - D is injective on V this is well defined). Then 

$(TU) - O@J T ( ~ u )  - u ~ ( u )  (7.8) 

and using the independence of 1 and U over Q, we obtain 

$T(U) = Tf(U) $(U) = f ( u )  (7.9) 

whence $ = f and $T = T$. 

Proposirion 4. 
F. Then @ i s  Z[r]-linear and 

Let $ : 1 + II be a Z-linear map and suppose that for some r, s 0, $Er = 

(i) If r = s then $ E H4: 
(ii) If r # s then s / r  = rk for some k E ~ Z  and $ E T - ~ H ~ .  
Conversely if r, s 0 and $ : H -+ II is a Z-linear mapping satisfying (i) and (ii) then 

$C' = E'. 

Proof. Since E r  and Cs contain bases for 1 (over Z), $ is surjective and hence bijective. 
By (i). @ is s-linear. i.e. $ is a ~Z[s]-linear map. Extend $ to an IF-linear map of Ell onto 
itself. Let S' be the ball of radius t,  t > 0, in &. 

Now 
.~ 

C' = {x E 1 I lx'l c r ]  = {y' I y E 1'. IyI c r ] .  
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Let + : W p  be the F-bilinear map U H (@(U’))’. Then we claim 
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+(sr n 1’) c ss . 
Indeed, y E S‘ n I’ + y’ E C‘ =$ @(y’)  E Cs j (@(y’))’ E Ss. Since S‘ n 1’ is dense in 
S‘ and @ is linear we conclude that @(S‘) c Ss. Using @-’ we conclude in the same way 
that +-l(SS) c S‘. Thus 

+(S‘) = ss. (7.10) 

It follows that @ is a dilation: 

’ +(Y) = ( s / r P x  . Y v x ,  Y E b. (7.12) 

Choosing x ,  y E 1’ with x . y = 1, we obtain (because +a‘) c I’ and 1’. II’ = Z[r]),  

(7.13) 

Suppose now that s = r so + is an isometry. Recall ni : Q + 1’. We use this to lift 

( s / r ) 2  E Z.[r]. In the same way from +-’ we obtain (r/s)’ E Z[r] ,  therefore 

(s/r)’  E Z[r]:,, = ( rk  I k E Z} = ( 5 ) .  

+ back to a linear mapping 4 on Q that commutes with T .  Also by (3.4) 

( 4 ( x )  I4tY)) = 2(+ZL(X) ‘ + n ( Y ) ) r  = Z(ir,tX) ’nL(Y))c = (x  I Y). (7.14) 

Thus 4 : Q + Q preserves the bilinear form (. I .). It follows that 4 E W(Eg),  i.e 
4 E Aut (A). Since also 4T = T$, we have by the proposition 2 

4 E H4. (7.15) 

is a mapping of the form U + sut-’ or U + sit-’, s, t E 1‘. Returning 

(7.164 

Consequently 
to @, 

@(U) = (+(U’))’ = (su’t-1)’ = s’ut’-’ 

or 

@(U) = S ’ i P  . (7.166) 

where s‘, f’ E I .  Thus we have proved that @ E H4, completing the proof of (i). 
Now we consider the case r # s. Let a = (s/tIZ. If {el, e2, e3, e4} is a basis for W and 

G = (zij) = (ei ’ e ] )  is the corresponding Gramm matrix, then writing +ei = Cajiej and 
A = (aji) we obtain 

a c  = A’GA. (7.17) 

The G r a ”  matrix G is positive-definite since ( . ) is a positive-&finite scalar product on 
W. But (er, e;, e;. e:] is also a basis for W and 

(e! r J  .e!) = k{e!F! J J  + ejzj} = 11e.c. 2 c +e.?.}’ J r - - (ei .e j ) ’=  d j .  (7.18) 

Thus G’ is also positive-definite. From (7.17) 

a’G’ = A“G’A’ (7.19) 

and since A’TG‘A’ is positivedefinite, a’ > 0. But a = tm so a’ = um z 0 whence h = 2k 
for some k E Z and so s / r  = rk for some k E Z. 

Finally rk@ : I[ + I and the corresponding mapping U H (rk@(u’))’ is an isometry. 
0 Hence we are in case (i) and rk@ E H4. 
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Proposition 5. Let X be the set of equivalence classes of Z under isomorphism. Then X 
is a group isomorphic to R+/(r) via the map Er -+ r ( s ) .  

Proof. Z r  N Z8 + s = rkr  for some k E Z. The group structure on X is induced from 
(5.2). 0 

Note that 

R+/W R/Z 

under the mapping 

logr 
log r r H -  modZ. 

(7.20) 

(7.21) 

8. The quasicrystal systems and subsystems 

In our definition of quasicrystals in section 5 we have adopted as the acceptance domains 
the open balls centred at origin. Of course, ahy bounded neighbourhood n of the origin 
invariant under the appropriate symmetry group G can be used to produce a quasicrystal 
with G-invariance. The choice of open balls is particularly convenient from an algebraic 
point of view, but from the point of view of tilings it has been very important to use various 
polytopes as acceptance domains [ 1-41. The sheer enormity of the number of possible 
choices makes it difficult to make a coherent scheme out of all available quasicrystals. 
However, we may notice that if we choose a polytope P we can, by suitably scaling P, 
arrive at a system 

s2 := [ m ) r > o  (8.1) 

of quasicrystals and that the system is 'commensurable' with E in the sense that for all 
s 0 there are positive real numbers rl , rz, r3. r4 so that 

Er' c s2' c Zn and '2'' c E' c Qr4. (8.2) 

This suggests that we introduce the notion of a system of quasicrystals. 
Zai be a finitely generated subgroup of R" (in general m > n). Let 

G be a subgroup of GL(N) that leaves M invariant. A subset A0 of M is a G-invariant 
M-quasilattice of M if A0 is G-invariant, discrete and uniform (uniform means that there is 
a real number R > 0 such that every ball of radius R in R" intersects A0 non-trivially). By 
a system of G-invariant Mquasilattices we mean a set {Ai]iC, of G-invariant quasilattices 
of M together with the partial ordering of inclusion satisfying 

(i) for all i ,  j E J there exist k,  1 E J so that Ak c Ap c A,, p = i ,  j ;  
(ii) Ui,,Ai = M, &,Ai = (0). 

A second system of G-invariant M-quasilattices A' = {Ai, l ~ i  E 1'1 is commensurable 
with A if for all i E I ,  i' E I' there exist j ; ,  j ;  E 1', jl, j z  E I so that 

Let M = 

A;; C Ai C A;; Aj, C Ai C Ai2. 
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Thus X = { E r  I r z O} is a system of H4-invariant I-quasilattices and the choice of 
any acceptance domains r P ,  r > 0, where P is some H+-invariant polytope centred at the 
origin leads to a commensurable system. 

A sysfem of quasicrystals is a system of quasilattices in which each A, is a quasicrystal. 
Unfortunately at the present time a suitable general definition of quasicrystals is elusive. 
Generally, it is believed that it should at least involve a statement about the Fourier transform 
of the set of points involved. We do not have anything to add to this question. 

A symmetry of a quasilattice system A is a &-linear mapping 4 on M that induces a 
mapping 6 on I so that @Ai = A J ( ~ )  for all i E I. Thus we have proved in section 7 that 
for our quasicrystal system the symmekies comprise precisely the group generated by 
H4 and the inflations r i ,  k E Z. If @ is a symmetry of A and A‘ is commensurable with 
A then we can ‘complete’ A’ to a commensurable quasilattice A” containing A’ that also 
has @ as a symmetry. In this way the symmetry group of a commensurable collection of 
systems of quasilattices is a well defined object. 

In the mt of this section we discuss some specific subsystems of the E8 system. 
First we consider the A4 quasicrystal system used for the examples in figures 2 and 

3. For this we choose from figure 1 the subdiagram of the E8 simple roots a3, a4, as, a8 
spanning the Aq diagram and rename the roots a,, a2, a3, ad respectively according to the 
standard A4 convention. Thus we have 

q(q) = a3 = ;CO, 1, -U, -t) 

q(a i )  = ra3 = -(o, I ,  --p. -7) 

and also 

, q(a2)  = sa4 = $(o, -1, -U, r )  
7 (8.3) 

q(a4)  = a4 = ;CO, -1, -U, r )  2 

U 
~ r ~ ( a 3 )  = nu’ - -(O, 1, -r, -U)  xL(a4) =ai = $(o, -1, --r, U ) .  

3 -  2 

The two-dimensional quasicrystal X r  n (Fa3 + Fa4) is then built for a given r > 0 by 
repeating the following steps. One takes a point x in the Ad-root lattice, 

n = x l a l  + X 2 f f Z + X 3 a 3 + X 4 a 4  x , ,  ..., X4€Z (8.5) 

and its projection ?(i (x) ,  

Then one selects the point 

ruW = (XI + t x3 )9  + (x4 + rxda (8.7) 

in the plane spanned by the unit quaternions a3 and a4 iff the quatemionic norm N(ns(x)) 
verifies the inequality 

N ( X ~ ( X ) )  < r 2 .  (8.8) 
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Note that thequatemionic nature of the basis vectors plays no role in the process of selection. 
The symmetry group of the A4 system of quasicrystals induced from the symmetries 

of the E8 quasicrystal system is, according to (&IO), t he  group generated by the dihedral 
group 

Hz := (R3, R4) lHz1 = 10 (8.9) 

and the group of inflations (5). 

the 0 6  subdiagram 
Undoubtedly the most important subsystem of the Eg quasicrystal system is given by 

(8.10) 
cI-G-3 

of the Eg diagram. It properly contains the two-dimensional A 4  system discussed above. 
In the set-up of figure 1, the six-dimensional root lattice of D6 is projected onto the three- 
dimensional space of pure quatemions of II as was already pointed out in section 5. 

Renumbering the ES roots n ~ , f f 3 , c r 4 , ( ~ 5 , ( ~ 6 , c x ~ ,  which span the DS subdiagram, 
respectively as f f ~ ,  crz, a) ,  @a, cx5, crg, and choosing a value of r > 0, we build a three- 
dimensional quasicrystal point by point as before. Explicitly, a latiice point 

x = xlffl + . ' . + X6C% XI,  . . . , x6 E (8.11) 

of the 0 6  mot lattice gives rise to the two projections: 

~ ( x l ( x ) )  = nl(x)  . nL(x)  < r2 . .  (8.14) 

the point (8.13) is selected in the 3-space in which the pure quaternions 112, 113, 113 of 
figure 1 serve as basis vectors. 

The induced symmetry group of the system of 0 6  quasicrystals is generated by the 
icosahedral group H3 = ( R z ,  R3, R4) of (6.20) and the inflations (T). 

There are three other possible ways to cut a pair of vertically aligned nodes of the E8 
diagram of figure 1. Each of them leads to a different subdiagram hence to a different 
qusicrystal system in 3-space. Here we specify each of the three cases by its symmetry 
group G and by the type of the subdiagram one gets. They are the following: 

G := ( R I ,  R3, R4) IGI = 120 2Al + A 4  (8.15) 

G := ( R I ,  R2, R4),  \GI = 12 2Ai + 2A2 (8.16) 

G := ( R I ,  Rz. R3) !GI = 24 2A3 .  (8.17) 

The quasicrystals in these cases are built in the same way as above using the appropriate 
quatemions from among 111, az, a3. a4 for basis vectors of the 3-space. 
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Finally one may wish to see the best known of all quasicrystals: the one-dimensional 
one. Following our approach, we cut the E8 diagram of figure 1, removing from it all but 
one pair (any pair) of vertically aligned nodes. We are left with the A1 + A1 diagram. Call 
the simple roots a and @. They project as 

q ( a )  = a ~ L ( ( Y )  = a’ q@) = ra zL(@) = UQ‘ (8.18) 

where a is the icosian left in the cut diagram. 
x ~ a  +xzB,  XI, xz E Z, of the AI +A1 lattice satisfying the inequality 

~ ( ( x l  + ~ x z ) ~ ’ )  = (xi + uxz)2a’r?’ = (x1 + 0 x 2 ) ~  < r2 

For a fixed r ,  every point x = 

determines a point of the one-dimensional quasicrystal, namely the point 

zll(x) = (XI + txz)a.  

The basis vector a is irrelevant for the onedimensional problem. Indeed, the construction 
really takes place in Z [ T ]  and the system of quasiclystals is 

Ar := (x E Z[t] [ (x ’ [  < r ) .  (8.19) 

It is interesting to observe that &ere is a series of relative quasicrystals based on II which 
arise by altering the acceptance domain to a spherical shell: for 0 < r c R, 

E ’ . R = ( x X I I r < I r ’ l < R ) = E ~ \ E ’ .  

These sets retain the H4-symmetry but lose the inflational symmetry. 

9. Shelling quasicrystals 

In 161 Sadoc and Mosseri introduce the notion of the shelling of quasicrystals and make 
a remarkable conjecture concerning the number of points on shells. In this section we 
describe the basic features of this process in the icosian setting. 

The ER root lattice Q decomposes into a set of concentric shells 

This gives rise to the theta series 

for which there is the well known result [9] 

(9.3) 

We now introduce a shelling on each quasicrystal E‘: We set IN := ZW(QN) (in other 
words Q N  is viewed in W) and 

Cb := E r  n IN = (x E IN [ (x’( c r ) ,  (9.4) 
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For x E II we have x E Eh if and only if 

x . x  = N +mr 
o < x ' - x '  = N +ma i r z .  

(952) 

(9.5b) 

For some m E Z, from (9.5b) we have the equivalent condition 

NT > m  > ( N  - r 2 ) r .  (9.5c) 

The inequality ( 9 5 )  is particularly interesting when Nr - ( N  - r2)r = 1, i.e. 

1 r = - = = '  . P. f i  
In this case we obtain 

E; = ( x  E 1 I x . x  = N+[Nr]r} N =o, 1.2 ,... 

where [Nt] is the integer part of NT. 
Consider now the inflational symmetry 

x H TX 

that maps E" bijectively onto c E". We have 

x E E; =$ x . x  = N + [ N T ] T  

=+. T X  . T X  = N(r + 1)  + [Nt1(2~ + 1)  = ( N  + [ N r l )  + ( N  + 2[Ntl)t 

and hence, in view of (9.7), 

r-4 c %+INr, (9.8) 

[ ( N  + [A's])<] = N + ~ [ N T ]  . (9.9) 

This brings us to the Lucas sequences 

( L J  = klF"4 +gzF,I,m_, (9.10) 

where IF,}? = (0,1, I ,  2 ,3 ,5 , .  . .} is the Fibonacci sequence and gl, g2 are fixed natural 
numbers. Thus 

L I  =g2 L2=g1 +g2 and L,+I = L, + L,-I. (9.11) 

Beginning with gz = N ,  g, = [Nr] - N ,  where N E Z+, we obtain the Lucas sequence 

( L A N ) )  = IN, [Nrl, N + [Nrl ,  N + 2[NrI,. . .I 
By successive applications of (9.8), (9.9), and (9.7) we obtain for all odd n 
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Remarkably (9.12) is an equality: 

TE:",,, = E:l+*,N). (9.15) 

Indeed, x E Xinit(,,,) + x . x = L,+z(N) + Ln+3(N)r, so that 

ux . ux = (U + I)(L,+z(N) + rL,+3(N))  = L,(N)  + rL.+I(N).  

In view of (9.14) and (9.7). u x  E XfnlN) and so finally x = - ~ ( U X )  E rZ&N). 
We define 

sN=cardz;  N = 0 , 1 , 2  ,.... (9.16) 

In view of (9.15) we have for all N 

SN = sN+lNr] .  (9.17) 

We observe from (6.15) and (6.16) that each shell E,$ has complete X4-symmetry. In 
particular since left multiplication by elements of I acts without fixed points, each shell 

 decomposes into I-orbits of 120 elements each. Consequently we have 

120 I S N  for all N .  (9.18) 

In [ l l ]  an explicit formula for card E; is given for all N E N, r > 0. In particular for 
the case r = p this for mula becomes 

SN = 120 ( Z [ r l :  b) 
bltN+INzlr)Zllrl 

(9.19) 

The sum runs over all right ideals of P dividing (N+[Nrlr)Z:[rl and (Z[rl : b) is the index 
of b as a subgroup of %[TI. Although throughout the present paper the ring structure of II 
is not really used, the derivation of (9.19) and the more'general formulas of [ll] depend 
heavily on the fact that P is a maximal order in Wp. 

Our efforts to prove (9.19) were inspired by the conjectured formula (which is actually 
incorrect) in [6]. The first place where our formula differs from theirs is at N = 55. 

10. Concluding remarks 

Results of this paper pertain to quasicrystals in dimensions 4,3,2, and 1. In the article 
we have exploited the unique position of the Eg root lattice in mathemdtics through its 
relation with the special set of quatemions, the icosians, and their relation with the quadratic 
extension IF of the rationals by &. Generalization to other structures is possible but it is 
neither straightforward nor simple. However, the Eg playground set up here is large enough 
that practically all the interesting known quasiperiodic structures in physics, involving five- 
fold symmetry, can be found in it. In section 8 we have pointed out some of the possibilities. 

In this article a quasicrystal is a set of points: projections of lattice points in double 
dimension. In the literature one is sometimes interested in quasiperiodic tilings. A 
quasicrystal is then viewed as a set of n-dimensional tiles in n dimensions, the important 
cases being n = 2, 3. For this we need to start from a tiling of the 2n-dimensional 
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space invariant under the corresponding Coxeter group W, and project appropriate faces 
of the tiles using XL and X I ,  from this paper. An explicit general description of tilmgs 
generated by Coxeter groups in Euclidean and other spaces for an arbitrary finite dimension 
recently became easy [14,18]. Moreover, the formalism here is ready-made for studying 
the quasiperiodic tilings in four (Euclidean) dimensions and their subsequent projections to 
any lower dimension. 

The quasicrystals in this article 'live' in Euclidean spaces of dimensions up to 4 where 
certain unit quatemions (icosians) serve as basis vectors. As was illustrated in section 9, 
the quatemions not only offer considerable convenience in our construction but are crucial 
in understanding more subtle aspects of the theory. 

Appendix. The icosian ring as a lattice 

In this section we provide an explicit description in terms of coordinates of U as a lattice in 
R.4. 

The icosian ring U is the additive group generated by the three sets of elements (3.1). 
The first set of points generates Z4.  Adjoining to' it the second set we obtain 

~4 := {(a! ,  . . . , (14) I ai E iz for all i or ai E z~+  i for all i )  

the index [ L 4  : Z 4 ]  = 2,  and L 4 / Z 4  is generated by the icosian f ( l .  1,1,1). 
Since rH c 1, we obtain 

L 4 +  r L 4  = [a+  rb I a, b E L4} c U. 

Now consider $CO, l , u ,  r )  = -( 1 0, 1, 1 - r , r )  = a(0, 1, l ,O)+kr(O,O,  -1, 1). Define 

i 4  = [(al. . . . . 0 4 )  I ai E Z U (Z + i), card [i I ai E 'Z is even}}. 

Let us show that i 4  f L 4  N Zz x Z2. Set 

U := $(I, 1,0,0) b : =  $CO, I, 1.0) c : =  ; ( l ,O,  1.0). 

If x = ( X I , X Z , X ~ . X ~ )  E &\L4 then exactly two of the xi lie in Z + k. Since 
1 z(', 1.1.1) E L 4 ,  

a = - a = -  a+$(1,1,1,1)=~(0,0,1,1)modL~ " 

b r $ ( 1 , 0 , 0 ,  I)modL4 
c 5 . ?  2(0. 1.0. I)modL4. 

Together with 0 = 4(0,0,0,0) this covers all possibilities for i 4 / L 4 .  Thus 

i 4  = L 4  + (a + L 4 )  t (b + L 4 )  + (c + L 4 )  

and i 4 / L 4  21 & x &. 

components. Then L 4  is an S 4  invariant subspace. Hence S 4  acts on i 4 / L 4 .  
Now consider the action of the symmetric group S 4  on i4 determined by permuting 
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Let K = { I ,  (12)(34), (13)(24), (14)(23)1, 

K a S 4  S 4 f K . r r S 3 .  

We have 

(12)(34)a = a  

(13)(24)a = $0.0,1,1) amodL4 

(12)(34)a = i (O,O,  1, l)  amodL4. 

The same happens for b, c. Thus K acts trivially on i 4 / L 4  and we get an action of S3 on 
i 4 / L 4  from S 4 f K  Y S3. 

The two non-trivial elements of A3 are (123) and (132), 

(123)a=(123)$l,1,0,0)=~(0,1,1,0)=b 

(123)b=(123)~(0,1,1,0)=~(1,0,1,0)=c 

(123)~ = a .  

We can now determine H: we know that 

i 4 + s i 4  > x > L 4 + 5 L 4  and [i4 + s i 4  : LA + rL4J = 16. 

We claim that 

II = U := [x + s y  I x ,  y E i 4 ,  (123)~ xmod L q ] .  

It is immediate from the definition that U is a group and L4 + sL4 c U. Furthermore, 
since for x + ys E U the value of xmod L4 is determined by y and [i4 : L4J = 4, we see 
that [B : L4 + sL41 = 4. Now the generators of 1 all lie in U and hence 1 c U. Finally it is 
clearthat[y Ix+yr €1, x ,y€ i~} i sprec i se ly i4andso~f (L4+sL4)=Uf(L4+sL~) ,  
whence I[ = JI. 
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