Quasicrystals and icosians

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 262829
(http://iopscience.iop.org/0305-4470/26/12/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:47

Please note that terms and conditions apply.

Quasicrystals and icosians

R V Moody \dagger and J Patera \ddagger
\dagger Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
\ddagger Centre de recherches mathématiques, Université de Montreal, CP 6128-A, Montréal, Québec H3C 3J7, Canada

Received 1 December 1992

Abstract

A family of quasicrystals of dimensions 1, 2, 3, 4 governed by the root lattice E_{8} is constructed. The use of the icosian ring, found in the quaternions with coefficients in Q $(\sqrt{5})$, allows simultaneous interpretation of the construction both in physical space and as a result of the standard 'cut-and-projection' method in double dimension. Icosians are seen to provide a natural co-ordination scheme for these quasicrystals. Nested sequences of quasicrystals form systems whose symmetries are all derivable from inflational and reflective symmetries directly related to the arithmetic of the icosians. The use of Coxeter diagrams clarifies the amazing relationship of E_{8} and quasicrystal symmetries and leads to the fundamental chain $E_{8} \supset D_{6} \supset A_{4} \supset A_{1} \times A_{1}$ that underlies five-fold symmetry in quasicrystals. Decomposition of quasicrystals into concentric shells and a counting formula for the cardinalities of these shells is discussed.

1. Introduction

The six independent vectors of the reciprocal space required in the analysis of diffraction patterns of three-dimensional quasicrystals displaying icosahedral symmetry are no longer a matter of contention among physicists. More contentious is whether or not this fact demands a hyperspace theory formulated in higher than three-dimensional spaces or perhaps some amalgamation of a three-dimensional direct space and six-dimensional reciprocal space.

In this article we develop a theory that allows the three- and six-dimensional worlds to live together simultaneously in the same space; it is only a matter of interpretation which of the two is being discussed.

Our work is based on the root lattice E_{8} and the largest of the non-crystallographic Coxeter groups H_{4}, together with a ning of quaternions with coefficients in a quadratic extension of the rational numbers (the icosians). Inherently it is a four-/eight-dimensional picture with standard three- and two-dimensional quasicrystals living as subsystems inside it. It brings together various ideas found in the literature, notably the series of articles [1-4] of the Tübingen group analysing the projections from A_{4} and D_{6} root lattices, the work of [5] where the connection between the E_{8} root lattice, icosians and quasicrystals was first made, and the recent article [6,7] where the E_{8} shelling problem is first exposed. An important revelation was the ingenious and visually appealing realization of the symmetry group H_{4} inside the Weyl group of E_{8} given in [8].

The role of the ring of icosians in the theory of non-crystallographic Weyl groups goes back to [9]. Its connection with E_{8} is pointed out in [10]. There are several passing references to icosians in the quasicrystal literature, but it seems to us that their real significance has not so far been realized. They are inherently simultaneously both four- and
eight-dimensional and offer a natural and concise coordination scheme for all icosahedral quasicrystals coming from the D_{6} cut-and-project procedure. In addition they have a multiplicative and arithmetic structure that allow us to multiply and otherwise manipulate quasicrystals in a natural way. Apart from making the entire quasicrystal symmetry, both isometrical and infiational, completely transparent, we feel that there is still much to be learned about the meaning of these remarkable structures.

In section 2 notation is fixed and some preliminary facts are recalled. We introduce the quadratic extension $\mathbb{F}=\mathbb{Q}(\sqrt{5})$ of the rational numbers \mathbb{Q} and the space of quaternions $\mathbb{H}_{\mathbb{F}}$ with coefficients in \mathbb{F}. Apart from the standard \mathbb{F}-valued norm on $\mathbb{H}_{\mathbb{F}}$, note the two positive-definite rational-valued norms also defined in $\mathbb{H}_{\mathbb{F}}$. These norms play a decisive role in the sequel.

In section 3 a l-1 correspondence between the simple roots of E_{8} and certain quaternions is fixed (figure 1). This is the first crucial technical step of the article. The correspondence singles out the 120 icosians and their 120τ-multiples; $\tau=(1+\sqrt{5}) / 2$. The icosian ring, generated by these 240 elements, is to be the stage on which the quasicrystals are defined in section 5. The advantage of our formulation of the E_{8}-icosian correspondence is that it allows us to read off many important facts directly from the Coxeter diagram of E_{8}. In particular, the D_{6}, A_{4}, and several other quasicrystals are straightforward particular subcases of those of E_{8}.

The inflational symmetry T, as introduced in section 4 , is the defining symmetry of quasicrystals. In $\mathbb{H}_{\mathbb{F}}$ it is simply multiplication by τ. In the E_{8} root lattice it determines quasicrystal eigenspaces. This is the second crucial step in this article.

In section 5 the quasicrystals Σ^{r} are defined in \mathbb{H}_{F} and in the four-dimensional eigenspaces of T (third crucial step). The parameter r is the radius of the acceptance domain which is taken here to be a sphere of appropriate dimension. Since in this article we are not concerned with the problem of quasiperiodic tiling (a quasicrystal consists here of points-vertices of some tiling), acceptance domains of more complicated shapes would offer only a minor variation to our examples (see also remarks in sections 8 and 10). New are the composition rules for our quasicrystals. An example of an A_{4}-quasicrystal is shown in figure 3.

The Coxeter group H_{4}, described in section 6 , is the most important finite group of our problem. Its generating reflections are read off the E_{8} diagram on figure 1 , as well as the generators of its important subgroups H_{3}, the binary icosahedral group, and H_{2}, the dihedral group of order 10 (fourth crucial step).

In section 7 we show that inflational and H_{4} symmetry account for all symmetries of the quasicrystal system Σ^{r}.

In section 8 quasicrystal systems in general are defined. These consist of infinite hierarchies of partially ordered quasicrystals all sharing the same symmetry group. The E_{8} subcases corresponding to D_{6}, A_{6}, and $2 A_{1}$ quasicrystals are discussed as examples.

In section 9 we introduce the shelling problem. If we decompose the E_{8} root lattice as a sequence of concentric spherical shells then we simultaneously 'shell' the quasicrystal Σ^{r}. The properties of these shells (in particular their cardinalities) constitute the shelling problem first formulated by Sadoc and Mosseri $[6,7]$. We announce here an explicit formula for these cardinalities. This formula, obtained by Moody and Weiss [11], corrects a conjectured formula given in [6]. Of particular interest is the direct appearance of the arithmetic of the icosian ring.

Structural lattice properties of the icosian ring are described in the appendix.

2. Notation and mathematical preliminaries

Let $\mathbb{F}=\mathbb{Q}+\mathbb{Q} \sqrt{5}$ denote the extension of rational numbers \mathbb{Q} by $\sqrt{5}$ with the standard automorphism

$$
\begin{equation*}
': \mathbb{F} \longrightarrow \mathbb{F} \quad(a+b \sqrt{5})^{\prime}=a-b \sqrt{5} \tag{2.1}
\end{equation*}
$$

Introduce the notation $\tau=\frac{1}{2}(1+\sqrt{5})$ and $\sigma=\frac{1}{2}(1-\sqrt{5})$, and note the identities

$$
\begin{equation*}
\sigma+\tau=1 \quad \sigma \tau=-1 \tag{2.2}
\end{equation*}
$$

and their consequences $\sigma^{2}=1+\sigma$ and $\tau^{2}=1+\tau$ which we use often. The ring $\mathbb{Z}[\tau]=\mathbb{Z}+\mathbb{Z} \tau$ is the ring of integers of \mathbb{F}.

Let $Q=Q\left(E_{8}\right)$ denote the root lattice of the simple Lie group E_{8}, and let $\Delta \subset Q$ be the set of roots of E_{8}. The usual symmetric bilinear form on Q with values in the integers \mathbb{Z} is denoted by ($\cdot \mid \cdot$) and assumed to be normalized so that ($\alpha \mid \alpha$) $=2$ for every root of E_{8}. The root lattice Q together with $(\cdot 1 \cdot)$ can be considered as a lattice in Euclidean space \mathbb{R}^{8}. Then we can consider also

$$
\begin{align*}
& V=\mathbb{Q} \text {-span of } Q \tag{2.3a}\\
& V_{\mathbb{F}}=\mathbb{F} \text {-span of } Q \tag{2.3b}
\end{align*}
$$

which are the eight-dimensional spaces in \mathbb{R}^{8} generated by Δ over \mathbb{Q} and \mathbb{F} respectively. The bilinear form $(\cdot \mid \cdot)$ is \mathbb{Q}-valued on V and \mathbb{F}-valued on V_{F}.

The standard quaternionic algebra over \mathbb{R} is denoted by \mathbb{H}, with the conjugation written as overbar:
$-: \mathbb{H} \rightarrow \mathbb{H} \quad \overline{\left(a_{1}+i a_{2}+j a_{3}+k a_{4}\right)}=a_{1}-i a_{2}-j a_{3}-k a_{4}$.
Quaternions $a_{1}+i a_{2}+j a_{3}+k a_{4}$ will often be written as the 4-tuples $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. The elements of

$$
\mathbb{H} \mathbb{F}^{0}:=\mathbb{R} i+\mathbb{R} j+\mathbb{R} k
$$

are the pure quaternions characterized by the identity $\bar{x}=-x$.
Inside \mathbb{H} we find the \mathbb{F} - and \mathbb{Q}-quaternion algebras defined as

$$
\mathbb{H}_{\mathbb{F}}:=\mathbb{F}+\mathbb{F} i+\mathbb{F} j+\mathbb{F} k \quad \mathbb{H}_{\mathbb{Q}}:=\mathbb{Q}+\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} k
$$

and the quaternion rings

$$
\begin{aligned}
& \mathbb{H}_{\left.\mathbb{Z}_{\{\tau}\right\}}:=\mathbb{Z}[\tau]+\mathbb{Z}[\tau] i+\mathbb{Z}[\tau] j+\mathbb{Z}[\tau] k \\
& \mathbb{H}_{\mathbb{Z}}:=\left\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \frac{1}{2}+\mathbb{Z}\right\}
\end{aligned}
$$

with basis $\frac{1}{2}(1+i+j+k), i, j, k$ over \mathbb{Z}.
We extend the field automorphism ' on \mathbb{F} to a \mathbb{Q}-linear automorphism on $\mathbb{H}_{\mathbf{F}}$ by

$$
\begin{equation*}
(a, b, c, d)^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \tag{2.5}
\end{equation*}
$$

The standard symmetric bilinear form (inner product) on \mathbb{H} is given by

$$
\begin{equation*}
x \cdot y=\frac{1}{2}\{x \bar{y}+y \bar{x}\} . \tag{2.6}
\end{equation*}
$$

In terms of coordinates this is the standard dot product on \mathbb{R}^{4}. In particular, we have the quaternionic norm of x,

$$
\begin{equation*}
N(x):=|x|^{2}:=x \cdot x=x \bar{x} \tag{2.7}
\end{equation*}
$$

whose values on $\mathbb{H}_{\mathbb{E}}\left(\right.$ resp $\left.\mathbb{H}_{\mathbb{Z}}\right)$ are in \mathbb{F} (resp \mathbb{Z}).
Next we introduce a second bilinear form, $(\cdot)_{\tau}$, on H. $_{\mathbb{F}}$ with values in \mathbb{Q} by combining with the \mathbb{Q}-linear map $x \mapsto(x)_{\tau}$ from $\mathbb{F} \rightarrow \mathbb{Q}$ defined by $(a+b \tau)_{\tau} \equiv a$. Thus

$$
\begin{equation*}
(x \cdot y)_{\tau}=a \quad \text { if } \quad x \cdot y=a+\tau b . \tag{2.8}
\end{equation*}
$$

It is called the rational form relative to τ. Similarly, one introduces the rational form relative to σ, replacing τ by σ in (2.8). Correspondingly one speaks of rational norms $(x \cdot x)_{\tau}$ and $(x \cdot x)_{\sigma}$.

Any element $x \in \mathbb{H}_{\mathbb{F}}$ can be written uniquely as $x=q_{1}+\tau q_{2}$, where $q_{1}, q_{2} \in \mathbb{H}_{\mathbb{C}}$. Then we have

$$
\begin{align*}
\left(q_{1}+\tau q_{2}\right) & \cdot\left(q_{1}+\tau q_{2}\right)=q_{1} \bar{q}_{1}+\dot{q}_{1} \tau \bar{q}_{2}+\tau q_{2} \bar{q}_{1}+\tau q_{2} \tau \bar{q}_{2} \\
& =N\left(q_{1}\right)+\tau^{2} N\left(q_{2}\right)+\tau\left(q_{2} \bar{q}_{1}+q_{1} \bar{q}_{2}\right) \\
& =N\left(q_{1}\right)+N\left(q_{2}\right)+\tau\left(N\left(q_{2}\right)+q_{2} \bar{q}_{1}+q_{1} \bar{q}_{2}\right) . \tag{2.9}
\end{align*}
$$

Consequently, we have

$$
\begin{equation*}
\left(\left(q_{1}+\tau q_{2}\right) \cdot\left(q_{1}+\tau q_{2}\right)\right)_{\tau}=N\left(q_{1}\right)+N\left(q_{2}\right) \tag{2.10}
\end{equation*}
$$

which shows that the rational norm of (2.8) on $\mathbb{H}_{\mathbb{F}}$ is positive-definite. In the same way the rational norm $(x \cdot x)_{\sigma}$ is also positive-definite on $\mathbb{H}_{\mathbb{F}}$.

3. The icosian ring and the E_{8} root lattice

The following 120 unit quaternions:

$$
\begin{align*}
& (\pm 1,0,0,0) \quad \text { and all permutations } \\
& \frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1) \tag{3.1}\\
& \frac{1}{2}(0, \pm 1, \pm \sigma, \pm \tau) \quad \text { and all even permutations }
\end{align*}
$$

called icosians, form a finite group I, the group of icosians, under the standard quaternionic multiplication [12]. The group is isomorphic to the binary icosahedral group.

The icosian ring, denoted by \mathbb{I}, is the \mathbb{Z}-span of I. Note that

$$
\begin{equation*}
\tau=\frac{1}{2}(\tau, 0, \sigma, 1)+\frac{1}{2}(\tau, 0,-\sigma,-1) \in \mathbb{I} \tag{3.2}
\end{equation*}
$$

and similarly $\sigma \in \mathbb{I}$. Clearly $\overline{\mathbb{I}}=\mathbb{I}$ but notice that $\mathbb{I}^{\prime} \neq \mathbb{I}$ (see the appendix for more on this).

Figure 1. The mapping $\pi_{\|}: \Delta \rightarrow I \cup \tau I$ given in terms of the mapping of the simple roots of $E_{8} . \quad a_{i}=\frac{1}{2}(-\sigma,-\tau, 0,-1), \tau a_{1}=\frac{1}{2}\left(1,-\tau^{2}, 0,-\tau\right), a_{2}=\frac{1}{2}(0,-\sigma,-\tau, 1)$, $\tau \dot{a_{2}}=\frac{1}{2}\left(0,1,-\tau^{2}, \tau\right), a_{3}=\frac{1}{2}(0,1,-\sigma,-\tau), \tau a_{3}=\frac{1}{2}\left(0, \tau, 1,-\tau^{2}\right), a_{4}=\frac{1}{2}(0,-1,-\sigma, \tau)$, $\tau a_{4}=\frac{1}{2}\left(0,-\tau, \mathbf{1}, \tau^{2}\right)$.

There is a \mathbb{Q}-linear isometric isomorphism $\pi_{\|}: V \simeq \mathbb{H}_{F}$ with ($\cdot \mid \cdot$) used on V and $2(\cdot)_{\tau}$ used on H_{F}. Under the isomorphism, 240 roots of E_{8} are mapped into the 120 icosians and their τ-multiples. We have

$$
\begin{equation*}
\pi_{\|}: \quad \Delta \rightarrow I \cup \tau I \quad(\alpha \mid \beta)=2\left(\pi_{\|}(\alpha) \cdot \pi_{\|}(\beta)\right)_{\tau} \tag{3.3}
\end{equation*}
$$

The explicit mapping $\pi_{\|}$set up in figure 1 realizes the isomorphism. For the rest of the paper we fix the notation

$$
a_{1}=\pi_{\|}\left(\alpha_{1}\right) \quad a_{2}=\pi_{\|}\left(\alpha_{2}\right) \quad a_{3}=\pi_{\|}\left(\alpha_{3}\right) \quad \tau a_{4}=\pi_{\|}\left(\alpha_{4}\right)
$$

used in figure 1.
As an example, let us verify the following property of E_{8} roots:

$$
-1=\left(\alpha_{5} \mid \alpha_{8}\right)=2\left(\pi_{\|}\left(\alpha_{5}\right) \cdot \pi_{\|}\left(\alpha_{8}\right)\right)_{\tau}
$$

Using a_{3} and a_{4} from figure 1 we have

$$
\begin{gathered}
2\left(\pi_{\|}\left(\alpha_{5}\right) \cdot \pi_{\|}\left(\alpha_{8}\right)\right)_{\tau}=\left(\tau a_{3} \cdot a_{4}\right)_{\tau}=\frac{1}{2}(\tau(0,1,-\sigma,-\tau) \cdot(0,-1,-\sigma, \tau))_{\tau} \\
\quad=\frac{1}{2}\left(\tau\left(-1+\sigma^{2}-\tau^{2}\right)\right)_{\tau}=-1
\end{gathered}
$$

Another isometric isomorphism $\pi_{\perp}: V \simeq \mathbb{H}_{\mathbb{F}}$ is built by replacing τ by σ in the definitions above. More precisely, one has

$$
\begin{array}{ll}
\pi_{\perp}(x)=\left(\pi_{\|}(x)\right)^{\prime} & \text { for all } x \in V \\
\pi_{\perp}: \quad \Delta \rightarrow I^{\prime} \cup \sigma I^{\prime} & (\alpha \mid \alpha)=2\left(\pi_{\perp}(\alpha) \cdot \pi_{\perp}(\alpha)\right)_{\sigma} \tag{3.4}
\end{array}
$$

Thus if $\left(\pi_{\|}(x) \cdot \pi_{\|}(y)\right)=a+\tau b$, then $\left(\pi_{\perp}(x) \cdot \pi_{\perp}(y)\right)=a+\sigma b$.
Often it is practical to choose in V the basis of simple roots, writing α_{i} as the column matrix

$$
\begin{equation*}
\alpha_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{T} \tag{3.5}
\end{equation*}
$$

where 1 is in the i th place. Relative to such a basis, the mappings $\pi_{\|}$and π_{\perp} are given by the 8×4 matrices

$$
\begin{align*}
& \pi_{\|}=\frac{1}{2}\left(\begin{array}{cccccccc}
-\sigma & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-\tau & -\sigma & 1 & -\tau & \tau & 1 & -\tau^{2} & -1 \\
0 & -\tau & -\sigma & 1 & 1 & -\tau^{2} & 0 & -\sigma \\
-1 & 1 & -\tau & \tau^{2} & -\tau^{2} & \tau & -\tau & \tau
\end{array}\right) \tag{3.6}\\
& \pi_{\perp}=\frac{1}{2}\left(\begin{array}{cccccccc}
-\tau & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-\sigma & -\tau & 1 & -\sigma & \sigma & 1 & -\sigma^{2} & -1 \\
0 & -\sigma & -\tau & 1 & 1 & -\sigma^{2} & 0 & -\tau \\
-1 & 1 & -\sigma & \sigma^{2} & -\sigma^{2} & \sigma & -\sigma & \sigma
\end{array}\right) . \tag{3.7}
\end{align*}
$$

4. Inflation

The bijective mappings π_{\sharp} and π_{\perp} are essential ingredients of defining quasicrystals. Here we describe some of their properties.

The mapping $\pi_{\|}$is determined by mapping four simple root vectors into certain icosians and the other four simple roots into τ-multiples of the same icosians (cf figure 1). The rational forms $(x \cdot y)_{\tau}$ and $(x \cdot y)_{\sigma}$ guarantee that the required angles and lengths of E_{8} roots remain the same in $\mathbb{H}_{\mathbb{F}}$ as they are in V.

Now we want to construct a \mathbb{Q}-linear map $T: V \rightarrow V$ which mimics in V the multiplication of icosians by τ, namely

$$
\begin{equation*}
\pi_{\|}(T x)=\tau \pi_{\sharp}(x) \quad \text { for every } x \in V . \tag{4.1}
\end{equation*}
$$

We get T by setting

$$
\begin{array}{ll}
T \alpha_{1}=\alpha_{7} & T \alpha_{7}=\alpha_{1}+\alpha_{7} \\
T \alpha_{2}=\alpha_{6} & T \alpha_{6}=\alpha_{2}+\alpha_{6} \tag{4.2}\\
T \alpha_{3}=\alpha_{5} & T \alpha_{5}=\alpha_{3}+\alpha_{5} \\
T \alpha_{8}=\alpha_{4} & T \alpha_{4}=\alpha_{8}+\alpha_{4}
\end{array}
$$

Obviously from (4.2) we have $T^{2}-T-1=0$ and T has two distinct eigenvalues, σ and τ, each occuring four times. We note also that if $x \in V$ and $\tilde{x}:=\pi_{\|}(x)$ satisfies $N(\tilde{x}) \in \mathbb{Q}$, then we have

$$
\begin{equation*}
(x \mid T x)=2(\tilde{x} \cdot \tau \tilde{x})_{\tau}=2(\tau N(\tilde{x}))_{\tau}=0 \tag{4.3}
\end{equation*}
$$

T is called the inflation map on V relative to π_{\sharp}.
Let us now extend $T, \pi_{\|}, \pi_{\perp}$ by \mathbb{F}-linearity to $V_{\mathbb{F}}$. Thus we have

$$
\begin{equation*}
\tilde{T}: \quad V_{\mathbb{F}} \rightarrow V_{\mathbb{F}} \quad \tilde{\pi}_{\|}: \quad V_{\mathbb{F}} \rightarrow \mathbb{H}_{\mathbb{F}} \quad \tilde{\pi}_{\perp}: \quad V_{\mathbb{F}} \rightarrow \mathbb{H}_{\mathbb{F}} \tag{4.4}
\end{equation*}
$$

as well as the extension of $(\cdot \mid \cdot)$ to $V_{\mathbb{F}} \times V_{\mathbb{F}}$ by \mathbb{F}-bilinearity. The space $V_{\mathbb{F}}$ splits as

$$
\begin{equation*}
V_{\mathbb{F}}=(\tilde{T}-\sigma) V_{\mathbb{F}} \oplus(\tilde{T}-\tau) V_{\mathbb{F}} \tag{4.5}
\end{equation*}
$$

into the direct sum of four-dimensional eigenspaces of \tilde{T}.
The map $\pi_{\|}: V \rightarrow \mathbb{H}_{F}$ is $1-1$ (a \mathbb{Q}-linear isomorphism). However, when we enlarge V to $V_{\mathbb{F}}$, the maps $\tilde{\pi}_{\|}$and $\tilde{\pi}_{\perp}$ get non-trivial kernels
$V_{\sigma}:=\operatorname{ker} \tilde{\pi}_{\|}=\left\{(\tilde{T}-\tau)(x) \mid x \in V_{F}\right\}=\{(T-\tau)(x) \mid x \in V\}$
$V_{\tau}:=\operatorname{ker} \tilde{\pi}_{\perp}=\left\{(\tilde{T}-\sigma)(x) \mid x \in V_{F}\right\}=\{(T-\sigma)(x) \mid x \in V\}$
which are the eigenspaces σ and τ of \tilde{T} of dimensions 4 over \mathbb{F}. The second equalities in (4.6) can be seen by observing that all the sets in question have \mathbb{Q}-dimensions equal to 8 . Let us prove that under ($\cdot 1 \cdot$) one has

$$
\begin{equation*}
\operatorname{ker} \tilde{\pi}_{\|} \perp \operatorname{ker} \tilde{\pi}_{\perp} \tag{4.7}
\end{equation*}
$$

We have for all $x, y \in V$
$(T x-\tau x \mid T y-\sigma y)=(T x \mid T y)-\tau(x \mid T y)-\sigma(T x \mid y)+\sigma \tau(x \mid y)$.
Since $T x, T y, x, y \in V$, we can work out these scalar products using (3.3):

$$
(T x \mid T y)=2\left(\tau \tilde{\pi}_{\|}(x) \cdot \tau \tilde{\pi}_{\|}(y)\right)_{\tau}=2\left(\tau^{2}(\tilde{x} \cdot \tilde{y})\right)_{\tau}
$$

where $\tilde{x}:=\pi_{\|}(x)$ and $\tilde{y}:=\pi_{\|}(y)$,

$$
(x \mid \tilde{T} y)=2(\tilde{x} \cdot \tau \tilde{y})_{\tau}=2(\tau(\tilde{x} \cdot \tilde{y}))_{\tau} \quad(\tilde{T} x \mid y)=2(\tau \tilde{x} \cdot \tilde{y})_{\tau}=2(\tau(\tilde{x} \cdot \tilde{y}))_{\tau}
$$

Thus (4.8) becomes

$$
\begin{equation*}
2\left\{\left(\tau^{2}(\tilde{x} \cdot \tilde{y})\right)_{\tau}-\tau\left(\tau(\tilde{x} \cdot \tilde{y})_{\tau}-\sigma(\tau(\tilde{x} \cdot \tilde{y}))_{\tau}-(\tilde{x} \cdot \tilde{y})_{\tau}\right\} .\right. \tag{4.9}
\end{equation*}
$$

From $\sigma+\tau=1$ and the linearity of the map $a+b \tau \longmapsto a$, we have

$$
\begin{equation*}
2\left\{\left(\tau^{2}(\tilde{x} \cdot \tilde{y})-\tau(\tilde{x} \cdot \tilde{y})-(\tilde{x} \cdot \tilde{y})\right)_{\tau}\right\}=0 \tag{4.10}
\end{equation*}
$$

due to $\tau^{2}-\tau-1=0$.
The maps $\tilde{\pi}_{\|}$and $\tilde{\pi}_{\perp}$ look like orthogonal projections. However, \mathbb{H}_{F} is not a subspace of V or $V_{\mathbb{F}}$. In order to 'see' $\tilde{\pi}_{\|}$as a projection, we do the following.

For any $x \in V$, we have the eigenspace decomposition
$x=x_{\tau}+x_{\sigma} \quad$ where $\quad x_{\tau}=\frac{T x-\sigma x}{\sqrt{5}} \quad x_{\sigma}=\frac{\tau x-T x}{\sqrt{5}}$.
Observe that
$\tilde{\pi}_{\|}\left(x_{\sigma}\right)=\tilde{\pi}_{\|}\left(\frac{\tau x-T x}{\sqrt{5}}\right)=0 \quad$ and hence $\quad \tilde{\pi}_{\|}\left(x_{\tau}\right)=\tilde{x}$.
Thus $\tilde{\pi}_{\|}$projects $\tilde{x}_{\tau} \longmapsto \tilde{x}$ and $x_{\sigma} \longmapsto 0$, and in the same way $\tilde{\pi}_{\perp}: x_{\sigma} \longmapsto \tilde{\pi}_{\perp}(x)$ and $x_{\tau} \longmapsto 0$.

The length of the image of a vector of V under $\pi_{\|}$is, up to an overall scaling, the length of the component that projects onto it. In fact

$$
\left(x_{\tau} \mid x_{\tau}\right)=\left(\left.\frac{T x-\sigma x}{\sqrt{5}} \right\rvert\, \frac{T x-\sigma x}{\sqrt{5}}\right)=\frac{1}{5}\{(T x \mid T x)-2(\sigma x \mid T x)+(\sigma x \mid \sigma x)\}
$$

where

$$
\begin{aligned}
& (T x \mid T x)=2\left(\tau^{2}(\tilde{x} \cdot \tilde{x})_{\tau}\right. \\
& 2(\sigma x \mid T x)=2 \sigma(x \mid T x)=4 \sigma(\tilde{x} \cdot \tau \tilde{x})_{\tau}=4 \sigma(\tau(\tilde{x} \cdot \tilde{x}))_{\tau} \\
& (\sigma x \mid \sigma x)=\sigma^{2}(x \mid x)=2 \sigma^{2}(\tilde{x} \cdot \tilde{x})_{\tau}
\end{aligned}
$$

$$
\alpha_{2}+\alpha_{3}+\alpha_{5} \quad \alpha_{3}+\alpha_{2}^{\bullet}+\alpha_{3}+\alpha_{4}
$$

$\stackrel{\bullet}{\alpha_{2}}$

Figure 2. The π_{1}-image of the roots of A_{4}. The simple roots $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ of A_{4} are respectively the simple roots $\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{8}$ of E_{8} of figure 1 as mapped by $\pi_{\|}$.

Writing $(\tilde{x} \cdot \tilde{x})=a+\tau b$, where $a, b \in \mathbb{Q}$, we get

$$
\begin{aligned}
\left(x_{\tau} \mid x_{\tau}\right)= & \frac{2}{5}\left\{\left(\tau^{2}(a+\tau b)\right)_{\tau}-2 \sigma(\tau(a+\tau b))_{\tau}+\sigma^{2}(a+b \tau)_{\tau}\right\} \\
= & \frac{2}{5}\left\{((1+\tau) a+(1+2 \tau) b)_{\tau}-2 \sigma(\tau a+(a+\tau) b)_{\tau}\right. \\
& \left.\quad+(\sigma+1)(a+b \tau)_{\tau}\right\} \\
= & \frac{2}{5}\{(2+\sigma) a+(1-2 \sigma) b\}=\frac{2}{5}\left(1+\sigma^{2}\right)\{a+\tau b\} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left(x_{\tau} \mid x_{\tau}\right)=c\left(\pi_{\|}(x) \cdot \pi_{\|}(x)\right) \tag{4.13}
\end{equation*}
$$

and in precisely the same way we find

$$
\begin{equation*}
\left(x_{\sigma} \mid x_{\sigma}\right)=c^{\prime}\left(\pi_{\perp}(x) \cdot \pi_{\perp}(x)\right) \tag{4.14}
\end{equation*}
$$

where the scaling constants in (4.13) and (4.14) are given by

$$
\begin{equation*}
c=\frac{2}{5}(2+\sigma) \quad, c^{\prime}=\frac{2}{5}(2+\tau) . \tag{4.15}
\end{equation*}
$$

Now consider the orthogonal projections

$$
\begin{array}{ll}
p_{\tau}: & V_{\mathbb{F}} \longrightarrow\left(V_{\mathbb{F}}\right)_{\tau}=V_{\tau} \\
p_{\sigma}: & V_{\mathbb{F}} \rightarrow\left(V_{\mathbb{F}}\right)_{\sigma}=V_{\sigma} \tag{4.16b}
\end{array}
$$

Then we have the commutative diagrams

and $\tilde{\pi}_{\|}$and $\tilde{\pi}_{\perp}$ are dilations with scaling factors c and c^{\prime} respectively. In this way $\pi_{\|}$and π_{\perp} mimic the projections p_{τ} and p_{σ}.

In the light of this discussion in we make an essential change in our viewpoint. Identify (as \mathbb{Q}-spaces) V and \mathbb{H}_{F} via the isometry $\pi_{\|}$. Then as soon as we view $x \in V=\mathbb{H}_{F}$ as being in the four-dimensional \mathbb{F}-space we are looking at its projection by $\pi_{\|}(x)$, while x^{\prime} is its projection $\pi_{\perp}(x)$ (see (3.4)).

An example where the result of a $\pi_{\|}$-mapping can be shown in two dimensions is found in figure 2.

Thus the two projections that we will use as the basis of the E_{8} cut and project scheme of forming quasicrystals are $\pi_{\|}$and π_{\perp}. In view of what we have said, they have an extremely simple and natural icosian interpretation. The scaling constants (4.15) that appear in relating this new picture to the usual one, which would involve p_{τ} and p_{σ}, amount to rescaling of the acceptance domain and the projected image, and are quite inessential.

5. Quasicrystals

For each $r>0$ we define the quasicrystals $\Sigma^{r} \in \mathbb{I}$ and $\hat{\boldsymbol{\Sigma}}^{r} \in \mathbb{I}$ as

$$
\begin{align*}
& \Sigma^{r}:=\left\{x \in \mathbb{I} \mid N\left(x^{\prime}\right)<r^{2}\right\}=\left\{x \in \mathbb{I}| | x^{\prime} \mid<r\right\} \tag{5.1a}\\
& \hat{\Sigma}^{r}:=\left\{x \in \mathbb{I}| | x^{\prime} \mid \leqslant r\right\} . \tag{5.1b}
\end{align*}
$$

Let us point out several properties of the definition. It builds a four-dimensional quasicrystal entirely in 4 -space and without reference to eight-space or the E_{8} root lattice. Restricting the choice of x in the definition (5.1) to pure quaternions from \mathbb{I}, we get a three-dimensional quasicrystal $\Sigma^{0 r}$ which again is built without reference to the underlying sublattice D_{6} (cf figure 1) of the E_{8} root lattice. The process of changing dimensions is now relegated to the pair of fields \mathbb{F} and \mathbb{Q}, the crucial ingredients being the involution (2.1) and the quaternionic norm (2.7).

It is immediately apparent from the definition that for all $r, s>0$

$$
\begin{align*}
& \Sigma^{r} \Sigma^{s} \subset \Sigma^{r s} \tag{5.2}\\
& \Sigma^{r}+\Sigma^{s} \subset \Sigma^{r+s} \tag{5.3}\\
& \Sigma^{r} \subset \Sigma^{s} \quad \text { if } r<s \tag{5.4}
\end{align*}
$$

Furthermore

$$
\begin{equation*}
\bigcup_{r>0} \Sigma^{r}=\mathbb{I} . \tag{5.5}
\end{equation*}
$$

All these quasicrystals in (5.2)-(5.5) can be replaced by their closures $\hat{\Sigma}^{r} \in \mathbb{I}$.
An important aspect of this definition is the fact that Σ^{r} is clearly invariant under the group H of 14400 symmetries $v \mapsto s v t^{-1}, v \mapsto s \bar{v} t^{-1}, s, t \in I$ (see (7.1) and section 6).

The quasicrystal Σ^{r} can be equivalently formulated as

$$
\begin{equation*}
\Sigma^{r}:=\left\{\pi_{\|}(x) \mid x \in Q, \pi_{\perp}(x) \cdot \pi_{\perp}(x)<r^{2}\right\} \quad r>0 . \tag{5.6}
\end{equation*}
$$

If we pull everything back to the V side we may define

$$
\begin{equation*}
\Sigma_{Q}^{r}:=\left\{x_{\tau} \mid x \in Q,\left(x_{\sigma} \mid x_{\sigma}\right)<c^{\prime} r^{2}\right\} \subset V_{\tau} \tag{5.7}
\end{equation*}
$$

using (4.15) and then by (4.12)

$$
\begin{equation*}
\tilde{\pi}_{\|}: \quad \Sigma_{Q}^{r} \longrightarrow \Sigma^{r} \tag{5.8}
\end{equation*}
$$

In this form Σ^{r} is seen directly to be formed by the cut-and-projection method when the acceptance domain is taken as a sphere of radius $c^{\prime} r^{2}$. Similar remarks apply to $\hat{\Sigma}^{r}$.

An example of a two-dimensional quasicrystal obtained using (5.6) is shown in figure 3. Note that figure 2 and figure 3 were obtained running the same computer program [13] for different values of r. More about A_{4} quasicrystals and the choice of an acceptance domain is found in section 8 .

Figure 3. A circular window view of a planar quasicrystal Σ^{r} showing pentagonal symmetry. The projection $\pi_{\|}$of figure 2 is applied to the points x of the A_{4}-root sublattice of the E_{8} root lattice provided one has $\pi_{\perp}(x) \cdot \pi_{\perp}(x)<25$.

Proposition 1. Let $r>0$.
(i) Σ^{r} and Σ_{Q}^{r} are infinite.
(ii) Σ^{r} generates \mathbb{I} as a \mathbb{Z}-module, Σ_{Q}^{r} generates V (as a \mathbb{Z}-module).
(iii) There exists a positive integer M such that for any $v \in V_{\tau}$ there exists $\left\{x_{i} \mid i=\right.$ $1, \ldots, M\} \subset \Sigma_{Q}^{r}$ so that v lies in the convex hull of the $\left\{x_{i}\right\}$.

Proof. Taking advantage of $\pi_{\|}$we prove the results only for Σ^{r}. We begin by observing that if $x \in \Sigma^{r}$ then $\left|(\tau x)^{\prime}\right|=|\sigma|\left|x^{\prime}\right| \leqslant|\sigma| r$ and so $\tau x \in \Sigma^{\tau^{-1} r} \subset \Sigma^{r}$. In the same way $\tau^{-1} x \in \Sigma^{r r}$. It follows at once that each set Σ^{r} is non-empty, and then infinite, proving (i).

Fix $r>0$. By (5.5) for some $s>0, \Sigma^{s}$ contains a set of generators of \mathbb{I} as a \mathbb{Z}-module. Also for some positive integer k, $\tau^{k} \Sigma^{s} \subset \Sigma^{r}$. Since $\tau^{k} \mathbb{I}=\mathbb{I}$ we see then that Σ^{r} contains a set of generators of \mathbb{I}, proving (ii).

In section 6 we will see that there is a reflection group H of order 14400 acting irreducibly on \mathbb{H} that stabilizes \mathbb{I} and each quasicrystal Σ^{r}. Thus if $x \in \Sigma^{r} \backslash\{0\}$ then $H_{4} x$ is a set of at most 14400 points in Σ^{r} that spans \mathbb{I} and forms the set of vertices of a convex polyhedron P_{x} inscribed in the sphere of radius $|x|$. Now clearly

$$
\begin{equation*}
\bigcup_{k=1}^{\infty} P_{\tau^{k} x}=\mathbb{H} \tag{5.9}
\end{equation*}
$$

and (iii) follows.

The origin of the ring \mathbb{I} is always a point of the quasicrystal Σ^{r}. The origin is the centre of symmetry of Σ^{r} (cf the example in figure 3) and is also the centre of the acceptance domain defined by the requirement $N\left(x^{\prime}\right)<r^{2}$.

Let us fix a vector $\Phi \in V=\mathbb{H}_{\mathrm{F}}$, and let us call it a phason, and consider its projections Φ and Φ^{\prime}. The quasicrystal Σ_{Φ}^{r} is defined by

$$
\begin{equation*}
\Sigma_{\Phi}^{r}:=\left\{x+\Phi \mid x \in \mathbb{I}, \quad N\left((x+\Phi)^{\prime}\right)<r^{2}\right\} . \tag{5.10}
\end{equation*}
$$

The quasicrystal Σ^{r} of (5.1) is obtained as the special case $\Phi=0$. In general the origin of II does not belong to Σ_{Φ}^{r} and Σ_{Φ}^{r} has no centre of symmetry.

The phason family of quasicrystals containing Σ_{Φ}^{r} has fixed r and Φ taking values from the proximity cell (or the Voronoi domain or Wigner-Seitz cell) [14] of the root lattice Q around the origin of V.

6. The Coxeter group \boldsymbol{H}_{4}

In this section we study certain subgroups of the Weyl group of E_{8} which are pertinent to the quasiperiodic structures in two, three, and four dimensions.

The Weyl group of E_{8} is generated by the reflections r_{1}, \ldots, r_{8} in planes orthogonal to the simple roots $\alpha_{1}, \ldots, \alpha_{8}$. This leads to the description in terms of the identities

$$
\begin{equation*}
W\left(E_{8}\right)=\left\langle r_{1}, r_{2}, \ldots, r_{8} \mid\left(r_{i} r_{j}\right)^{m_{i j}}=1\right\rangle \tag{6.1a}
\end{equation*}
$$

where $m_{i j}$ is the matrix element of M given by

$$
M=\left(m_{i j}\right)=\left(\begin{array}{llllllll}
1 & 3 & 2 & 2 & 2 & 2 & 2 & 2 \tag{6.1b}\\
3 & 1 & 3 & 2 & 2 & 2 & 2 & 2 \\
2 & 3 & 1 & 3 & 2 & 2 & 2 & 2 \\
2 & 2 & 3 & 1 & 3 & 2 & 2 & 2 \\
2 & 2 & 2 & 3 & 1 & 3 & 2 & 3 \\
2 & 2 & 2 & 2 & 3 & 1 & 3 & 2 \\
2 & 2 & 2 & 2 & 2 & 3 & 1 & 2 \\
2 & 2 & 2 & 2 & 3 & 2 & 2 & 1
\end{array}\right)
$$

or more succintly in terms of the Coxeter diagram

The Coxeter group H_{4}, of order 14400 , is defined abstractly by the presentation

$$
\begin{equation*}
H_{4}=\left\{R_{1}, R_{2}, R_{3}, R_{4} \mid\left(R_{i} R_{j}\right)^{m_{i j}}=1\right\} \tag{6.3a}
\end{equation*}
$$

where now

$$
M=\left(m_{i j}\right)=\left(\begin{array}{llll}
1 & 3 & 2 & 2 \tag{6.3b}\\
3 & 1 & 3 & 2 \\
2 & 3 & 1 & 5 \\
2 & 2 & 5 & 1
\end{array}\right)
$$

or equivalently by the Coxeter diagram

Of importance here also are the obvious subgroups H_{3} and H_{2} of H_{4} whose diagrams are

respectively. The orders of these groups are 120 and 10 respectively.
Let $x \in \mathbb{H}$ with $N(x)=1$. Then the Euclidean reflection in x (in the space $\mathbb{H} \simeq \mathbb{R}^{4}$ with the norm (2.7) is

$$
\begin{equation*}
R_{x}: v \rightarrow v-\frac{2 v \cdot x}{x \cdot x} x=-x \bar{v} x . \tag{6.6}
\end{equation*}
$$

Now let $x \in \Delta$ be a root which, when viewed in $\mathbb{H}_{\mathbb{F}}$, lies in I. Then $T x \in \Delta$ identifies with $\tau x \in \tau I$ and $(T x \mid x)=0$, see (4.3). Let r_{x} and $r_{T x}$ be the reflections in $V=\mathbb{H}_{\mathbb{F}}$ with respect to $(\cdot \mid \cdot)$. Let us see that we have

$$
\begin{equation*}
r_{T x} r_{x}=R_{x} \tag{6.7}
\end{equation*}
$$

in our identification of V and $\mathbb{H}_{\mathbb{F}}$ under $\pi_{\mathbb{H}}$. Indeed,

$$
\begin{gathered}
r_{T x} r_{x} v=r_{T x}(v-(v \mid x) x)=v-(v \mid x) x-(v \mid T x) T x \\
=v-2(v \cdot x)_{\tau} x-2(v \cdot \tau x)_{\tau} \tau x
\end{gathered}
$$

If we put $v \cdot x=p+q \tau$, where $p, q \in \mathbb{Q}$, then $(v \cdot x)_{\tau}=p,(v \cdot \tau x)_{\tau}=q$, and

$$
\begin{equation*}
r_{T x} r_{x} v=v-2(p+\tau q) x=v-2(v \cdot x) x=R_{x} v . \tag{6.8}
\end{equation*}
$$

Thus for all $x \in I$ we have (6.7).
Set

$$
\begin{equation*}
H:=\left\langle R_{1}, R_{2}, R_{3}, R_{4}\right\rangle \tag{6.9}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{1}:=r_{1} r_{7} \quad R_{2}:=r_{2} r_{6} \quad R_{3}:=r_{3} r_{5} \quad R_{4}:=r_{4} r_{8} \tag{6.10}
\end{equation*}
$$

In view of (6.7) these are reflections in $\mathbb{H}_{\mathbb{F}}$ and it is easy to see that they satisfy the Coxeter relations (6.3). In fact these relations are obvious from the standard Coxeter relations (6.1) of the Weyl group of E_{8}. The only unusual one (in fact the key one!) is

$$
\begin{equation*}
\left(R_{3} R_{4}\right)^{5}=\left(r_{3} r_{5} r_{4} r_{8}\right)^{5}=1 \tag{6.11}
\end{equation*}
$$

since $r_{3} r_{5} r_{4} r_{8}$ is a Coxeter element for the underlying Weyl group of the Lie group of type A_{4} and hence has order 5.

Alternatively we can work entirely inside \mathbb{H}. The reflections $R_{1}, R_{2}, R_{3}, R_{4}$ are determined by the Gramm matrix G of the basis $a_{1}, a_{2}, a_{3}, a_{4}$ under the quaternion inner product (2.6). Using the fact that

$$
\begin{equation*}
\frac{\tau}{2}=\cos \frac{\pi}{5} \tag{6.12}
\end{equation*}
$$

we see that

$$
\begin{equation*}
G=\left(-\cos \frac{\pi}{m_{i j}}\right) \tag{6.13}
\end{equation*}
$$

where $M=\left(m_{i j}\right)$ is given by (6.3). It follows by the well known result [15-17] that the reflective generators (6.10) of H satisfy the Coxeter relations of (6.3) and, indeed,

$$
\begin{equation*}
H \simeq H_{4} . \tag{6.14}
\end{equation*}
$$

Furthermore since the matrix G is indecomposable the real representation of H on \mathbb{H} is irreducible. The group H leaves invariant the \mathbb{F}-space \mathbb{H}_{F} which accordingly affords an irreducible \mathbb{F}-representation.

We next consider the set of all \mathbb{Z}-endomorhisms ϕ of $\mathbb{H}_{\mathbb{F}}$, defined for all $s, t \in I \times I$ as follows:

$$
\begin{align*}
& \phi_{(s, t)}: v \mapsto s v t^{-i} \tag{6.15}\\
& \gamma: v \mapsto \bar{v} . \tag{6.16}
\end{align*}
$$

The endomorphisms $\phi_{(s, t)}$ generate a group isomorphic to $I \times I /((-1,-1))$ which, together with γ generate a group H^{\prime} of order (120) ${ }^{2}$. Since each reflection R_{x} of (6.6) with $x \in I$ lies in H^{\prime},

$$
\begin{equation*}
H^{\prime}=H \simeq H_{4} . \tag{6.17}
\end{equation*}
$$

We also make note of the subgroup of H_{4} consisting of the 120 mappings generated by

$$
\begin{equation*}
\gamma \quad \text { and } \quad \phi_{(s, s)} \quad s \in I . \tag{6.18}
\end{equation*}
$$

We observe that if $x \in I$ is a pure quaternion $(\bar{x}=-x)$ then the reflection R_{x} of (6.6) takes the form

$$
\begin{equation*}
R_{x}: \quad v \mapsto x \bar{v} x^{-1} \tag{6.19}
\end{equation*}
$$

and that this reflection stabilizes the space \mathbb{H}^{0} of pure quatemions. In particular, the subgroup

$$
\begin{equation*}
\left\langle R_{2}, R_{3}, R_{4}\right\rangle \simeq H_{3} \tag{6.20}
\end{equation*}
$$

stabilizes \mathbb{H}^{0}. Since $\left|H_{3}\right|=120$, we obtain in this way the entire group (6.18).
We now have three pictures of H_{4} : the abstract version of (6.3), the subgroup H_{4} of the Weyl group of E_{8} given by (6.9), and the group generated by the endomorphisms (6.15) and (6.16) of \mathbb{H}. In general we will identify these three groups and denote them by H_{4}. When confusion is possible we will simply state which context we wish to view it in.

There is one final point. For each $x \in I$ the reflection R_{x} of (6.6) stabilizes I and so I is the non-crystallographic root system of type H_{4}. The set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is a base for I in the sense of finite root system: each element of I is uniquely expressible as a non-negative or non-positive linear combinations of $a_{1}, a_{2}, a_{3}, a_{4}[16,17]$.

Proposition 2. The group H_{4} viewed as a subgroup of $W\left(E_{8}\right)$ is characterized by

$$
\begin{equation*}
\left.H_{4}=\left\{w \in W\left(E_{8}\right) \cdot\right] w T=T w\right\} . \tag{6.21}
\end{equation*}
$$

The spaces V_{σ} and V_{τ} afford irreducible representations of H_{4}.
Proof. H_{4} is generated by the elements R_{1}, \ldots, R_{4} of (6.10). These are reflections when viewed as endomorphisms of \mathbb{H} over \mathbb{F} and hence commute with T as endomorphisms of V.

Conversely suppose that $w \in W\left(E_{8}\right)$ commutes with T. Then w acts as an \mathbb{F}-linear endomorphism on \mathbb{H} and $w(I \cup \tau I)=I \cup \tau I$. Now we claim that $w I=I$. Indeed, if $x \in I$ and $w(x)=\tau y$ for some $y \in I$ then $\tau x \in \tau I$ and $w(\tau x)=\tau^{2} y=y+\tau y$. Since $(y+\tau y \mid y+\tau y)=4$ we see that $y+\tau y \notin I \cup \tau I$. Thus $w I=I$.

If I_{+}is a positive system for the root system I (see $[16,17]$) then so is $w I_{+}$and hence there is a $w^{\prime} \in H_{4}$ with $w^{-1} w^{\prime}: I_{+} \rightarrow I_{+}$. Then $w^{-1} w^{\prime}$ preserves the unique simple system determined by I_{+}. It is easy to see that $w^{-1} w^{\prime}$ must effect a diagram automorphism and thus in our case of $H_{4}, w^{-1} w^{\prime}=1$, i.e. $w=w^{\prime} \in H_{4}$.

The statements about V_{σ} and V_{τ} follow by using the isomorphisms (4.17).

7. Symmetries of quasicrystals

The whole point of introducing H_{4} is of course that each quasicrystal Σ^{r} is H_{4}-invariant. Using (6.15) and (6.16) we have

$$
\begin{align*}
v \in \Sigma^{r} \Rightarrow & v \in \mathbb{I} \quad\left|v^{\prime}\right|<r \\
\Rightarrow & v \in \mathbb{I} \quad\left|s^{\prime} v^{\prime} t^{\prime-1}\right|<r \quad \text { for all } \quad s, t \in I \\
& \text { since } \quad\left|s^{\prime}\right|=|s|^{\prime}=1=\left|t^{\prime-1}\right| \tag{7.1}\\
\Rightarrow & \phi_{(s, t)}(v) \in \mathbb{I} \quad\left|\left(\phi_{(s, t)}(v)\right)^{\prime}\right|<r \\
\Rightarrow & \phi_{(s, r)}(v) \in \Sigma^{r} .
\end{align*}
$$

In the same way $v \in \Sigma^{r} \Rightarrow \bar{v} \in \Sigma^{r}$.
Considering the pure quasicrystals $\Sigma^{0 r}$ and using (6.19) and (6.20) we see that $\Sigma^{0 r}$ is H_{3}-invariant. Thus the D_{6} subdiagram of E_{8} obtained from figure 1 by deleting nodes α_{1} and α_{7} is responsible for the icosahedral quasicrystals. The role of D_{6} in determining the icosahedral symmetry by the cut and projection method is due to [7-9]. However, our acceptance domain is a ball in 3 -space rather than a polytope.

Quasicrystals Σ^{r} and Σ^{s} are said to be isomorphic if there exists a \mathbb{Z}-linear map $\phi: \mathbb{I} \rightarrow \mathbb{I}$ so that $\phi\left(\Sigma^{r}\right)=\Sigma^{s}$.

Proposition 3. Let $\phi: \mathbb{I} \rightarrow \mathbb{I}$ be a \mathbb{Z}-linear map and suppose that for some $r, s>0$, $\phi\left(\Sigma^{r}\right) \subset \Sigma^{s}$. Then ϕ is a $\mathbb{Z}[\tau]$-linear map.

Proof. We have to prove that $\phi(\tau x)=\tau \phi(x)$ for all $x \in \mathbb{I}$. Using $\pi_{\|}$we may pull everything back to Q and assume that $\phi: Q \rightarrow Q$ is a \mathbb{Z}-linear map with $\phi\left(\pi_{\|}^{-1}\left(\Sigma^{r}\right)\right) \subset \pi_{\|}^{-1}\left(\Sigma^{s}\right)$. Thus we have to prove that $\phi T=T \phi$.

We observe that ϕ lifts uniquely to a \mathbb{Q}-linear map on V and to an \mathbb{F}-linear map on $V_{\mathbb{F}}$. We will also denote these maps by ϕ. Consider the \mathbb{Q}-linear map

$$
\begin{equation*}
\lambda: V_{\tau} \longrightarrow V_{\sigma} \quad v \mapsto(\phi v)_{\sigma} \quad \text { for all } v \in V . \tag{7.2}
\end{equation*}
$$

By assumption $\phi\left(\pi_{\|}^{-1}\left(\Sigma^{r}\right)\right) \subset \pi_{\|}^{-1}\left(\Sigma^{s}\right)$. Since for all $x \in Q$,

$$
\begin{equation*}
x \in \pi_{\|}^{-1}\left(\Sigma^{r}\right) \Longleftrightarrow\left(x_{\sigma} \mid x_{\sigma}\right)<c^{\prime} r^{2} \tag{7.3}
\end{equation*}
$$

we have for all $x \in Q$

$$
\begin{equation*}
\left(x_{\sigma} \mid x_{\sigma}\right)<c^{\prime} r^{2} \Longrightarrow(\phi x)_{\sigma} \mid(\phi x)_{\sigma}<c^{\prime} s^{2} . \tag{7.4}
\end{equation*}
$$

As x_{τ} runs over Σ_{Q}^{r}, the set $\left\{x_{\sigma}\right\}$ is bounded; hence also the sets $\left\{\phi\left(x_{\sigma}\right)\right\}$ and $\left\{\phi\left(x_{\sigma}\right)_{\sigma}\right\}$ are bounded. Since also the set $\left\{\phi(x)_{\sigma}\right\}$ is bounded we have from

$$
\begin{equation*}
\phi(x)_{\sigma}=\phi\left(x_{\sigma}\right)_{\sigma}+\phi\left(x_{\tau}\right)_{\sigma} \tag{7.5}
\end{equation*}
$$

that the set $\left\{\phi\left(x_{\tau}\right)_{\sigma}\right\}$ is bounded; in short $\lambda\left(\Sigma_{Q}^{r}\right)$ is bounded.
According to the proposition 1, any point v of V_{τ} is expressible as a linear combination $\sum_{i=1}^{M} c_{i} x_{i}$ where $c_{i} \geqslant 0, \sum c_{i}=1, x_{i} \in \Sigma_{Q}^{r}$ and M is independent of v. Then $\lambda(v)=\sum_{i=1}^{M} c_{i} \lambda\left(x_{i}\right)$ and we see that $\lambda\left(V_{\tau}\right)$ is bounded. Since λ is linear we obtain $\lambda=0$. This proves that $\left(\phi V_{\tau}\right)_{\sigma}=0$, i.e. $\left(\phi V_{\tau}\right) \subset V_{\tau}$.

Now we can define the linear map $f: V \rightarrow V$ by

$$
\begin{equation*}
\phi((T-\sigma) v)=(T-\sigma) f(v) \tag{7.6}
\end{equation*}
$$

(since $T-\sigma$ is injective on V this is well defined). Then

$$
\begin{equation*}
\phi(T v)-\sigma \phi v=T(f v)-\sigma f(v) \tag{7.8}
\end{equation*}
$$

and using the independence of 1 and σ over \mathbb{Q}, we obtain

$$
\begin{equation*}
\phi T(v)=T f(v) \quad \phi(v)=f(v) \tag{7.9}
\end{equation*}
$$

whence $\phi=f$ and $\phi T=T \phi$.
Proposition 4. Let $\phi: \mathbb{I} \rightarrow \mathbb{I}$ be a \mathbb{Z}-linear map and suppose that for some $r, s>0, \phi \Sigma^{r}=$ Σ^{s}. Then ϕ is $\mathbb{Z}[\tau]$-linear and
(i) If $r=s$ then $\phi \in H_{4}$;
(ii) If $r \neq s$ then $s / r=\tau^{k}$ for some $k \in \mathbb{Z}$ and $\phi \in \tau^{-k} H_{4}$.

Conversely if $r, s>0$ and $\phi: \mathbb{I} \rightarrow \mathbb{I}$ is a \mathbb{Z}-linear mapping satisfying (i) and (ii) then $\phi \Sigma^{r}=\Sigma^{s}$.

Proof. Since Σ^{r} and Σ^{s} contain bases for \mathbb{I} (over \mathbb{Z}), ϕ is surjective and hence bijective. By (i), ϕ is τ-linear, i.e. ϕ is a $\mathbb{Z}[\tau]$-linear map. Extend ϕ to an \mathbb{F}-linear map of \mathbb{H} onto itself. Let S^{t} be the ball of radius $t, t>0$, in $\mathbb{H}_{\mathbb{E}}$.

Now

$$
\Sigma^{r}=\left\{x \in \mathbb{I}| | x^{\prime} \mid<r\right\}=\left\{y^{\prime}\left|y \in \mathbb{I}^{\prime},|y|<r\right\} .\right.
$$

Let $\psi: \mathbb{H}_{\mathbb{F}}$ be the \mathbb{F}-bilinear map $v \mapsto\left(\phi\left(v^{\prime}\right)\right)^{\prime}$. Then we claim

$$
\psi\left(S^{r} \cap \mathbb{I}^{\prime}\right) \subset S^{s}
$$

Indeed, $y \in S^{r} \cap \mathbb{H}^{\prime} \Rightarrow y^{\prime} \in \Sigma^{r} \Rightarrow \phi\left(y^{\prime}\right) \in \Sigma^{s} \Rightarrow\left(\phi\left(y^{\prime}\right)\right)^{\prime} \in S^{s}$. Since $S^{r} \cap \mathbb{I}^{\prime}$ is dense in S^{r} and ψ is linear we conclude that $\psi\left(S^{r}\right) \subset S^{s}$. Using ϕ^{-1} we conclude in the same way that $\psi^{-1}\left(S^{s}\right) \subset S^{r}$. Thus

$$
\begin{equation*}
\psi\left(S^{r}\right)=S^{s} \tag{7.10}
\end{equation*}
$$

It follows that ψ is a dilation:

$$
\begin{equation*}
\psi(x) \cdot \psi(y)=(s / r)^{2} x \cdot y \quad \forall x, y \in \mathbb{H}_{\mathbb{F}} \tag{7.12}
\end{equation*}
$$

Choosing $x, y \in \mathbb{I}^{\prime}$ with $x \cdot y=1$, we obtain (because $\psi\left(\mathbb{I}^{\prime}\right) \subset \mathbb{I}^{\prime}$ and $\mathbb{I}^{\prime} \cdot \mathbb{I}^{\prime}=\mathbb{Z}[\tau]$), $(s / r)^{2} \in \mathbb{Z}[r]$. In the same way from ψ^{-1} we obtain $(r / s)^{2} \in \mathbb{Z}[\tau]$, therefore

$$
\begin{equation*}
(s / r)^{2} \in \mathbb{Z}[\tau]_{>0}^{\times}=\left\{\tau^{k} \mid k \in \mathbb{Z}\right\}=\langle\tau\rangle \tag{7.13}
\end{equation*}
$$

Suppose now that $s=r$ so ψ is an isometry. Recall $\pi_{\perp}: Q \rightarrow \mathbb{I}$. We use this to lift ψ back to a linear mapping $\hat{\psi}$ on Q that commutes with T. Also by (3.4)
$(\hat{\psi}(x) \mid \hat{\psi}(y))=2\left(\psi \pi_{\perp}(x) \cdot \psi \pi_{\perp}(y)\right)_{\sigma}=2\left(\pi_{\perp}(x) \cdot \pi_{\perp}(y)\right)_{\sigma}=(x \mid y)$.
Thus $\hat{\psi}: Q \rightarrow Q$ preserves the bilinear form (.|.). It follows that $\hat{\psi} \in W\left(E_{8}\right)$, i.e $\hat{\psi} \in \operatorname{Aut}(\Delta)$. Since also $\hat{\psi} T=T \hat{\psi}$, we have by the proposition 2

$$
\begin{equation*}
\hat{\psi} \in H_{4} . \tag{7.15}
\end{equation*}
$$

Consequently ψ is a mapping of the form $v \rightarrow s v t^{-1}$ or $v \rightarrow s \bar{v} t^{-1}, s, t \in \mathbb{I}^{\prime}$. Returning to ϕ,

$$
\begin{equation*}
\phi(v)=\left(\psi\left(v^{\prime}\right)\right)^{\prime}=\left(s v^{\prime} t^{-1}\right)^{\prime}=s^{\prime} v t^{-1} \tag{7.16a}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi(v)=s^{\prime} \bar{v} t^{\prime-1} \tag{7.16b}
\end{equation*}
$$

where $s^{\prime}, t^{\prime} \in I$. Thus we have proved that $\phi \in H_{4}$, completing the proof of (i).
Now we consider the case $r \neq s$. Let $a=(s / t)^{2}$. If $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is a basis for \mathbb{H} and $G=\left(g_{i j}\right)=\left(e_{i} \cdot e_{j}\right)$ is the corresponding Gramm matrix, then writing $\psi e_{i}=\sum a_{j i} e_{j}$ and $A=\left(a_{j i}\right)$ we obtain

$$
\begin{equation*}
a G=A^{T} G A \tag{7.17}
\end{equation*}
$$

The Gramm matrix G is positive-definite since (\cdot) is a positive-definite scalar product on Hi. But $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}\right\}$ is also a basis for \mathbb{H} and

$$
\begin{equation*}
\left(e_{i}^{\prime} \cdot e_{j}^{\prime}\right)=\frac{1}{2}\left\{e_{i}^{\prime} \bar{e}_{j}^{\prime}+e_{j}^{\prime} \bar{e}_{i}^{\prime}\right\}=\frac{1}{2}\left\{e_{i} \bar{e}_{j}+e_{j} \bar{e}_{i}\right\}^{\prime}=\left(e_{i} \cdot e_{j}\right)^{\prime}=g_{i j}^{\prime} \tag{7.18}
\end{equation*}
$$

Thus G^{\prime} is also positive-definite. From (7.17)

$$
\begin{equation*}
a^{\prime} G^{\prime}=A^{T} G^{\prime} A^{\prime} \tag{7.19}
\end{equation*}
$$

and since $A^{\prime T} G^{\prime} A^{\prime}$ is positive-definite, $a^{\prime}>0$. But $a=\tau^{m}$ so $a^{\prime}=\sigma^{m}>0$ whence $m=2 k$ for some $k \in \mathbb{Z}$ and so $s / r=\tau^{k}$ for some $k \in \mathbb{Z}$.

Finally $\tau^{k} \phi: \mathbb{I} \rightarrow \mathbb{I}$ and the corresponding mapping $v \mapsto\left(\tau^{k} \phi\left(v^{\prime}\right)\right)^{\prime}$ is an isometry. Hence we are in case (i) and $\tau^{k} \phi \in H_{4}$.

Proposition 5. Let \mathcal{X} be the set of equivalence classes of Σ under isomorphism. Then \mathcal{X} is a group isomorphic to $\mathbb{R}_{+} /\langle\tau\rangle$ via the map $\Sigma^{r} \longrightarrow r\langle\tau\rangle$.

Proof. $\quad \Sigma^{r} \simeq \Sigma^{s} \Leftrightarrow s=\tau^{k} r$ for some $k \in \mathbb{Z}$. The group structure on \mathcal{X} is induced from (5.2).

Note that

$$
\begin{equation*}
\mathbb{R}_{+} /\langle\tau\rangle \simeq \mathbb{R} / \mathbb{Z} \tag{7.20}
\end{equation*}
$$

under the mapping

$$
\begin{equation*}
r \longmapsto \frac{\log r}{\log \tau} \quad \bmod \mathbb{Z} \tag{7.21}
\end{equation*}
$$

8. The quasicrystal systems and subsystems

In our definition of quasicrystals in section 5 we have adopted as the acceptance domains the open balls centred at origin. Of course, any bounded neighbourhood of the origin invariant under the appropriate symmetry group G can be used to produce a quasicrystal with G-invariance. The choice of open balls is particularly convenient from an algebraic point of view, but from the point of view of tilings it has been very important to use various polytopes as acceptance domains [1-4]. The sheer enormity of the number of possible choices makes it difficult to make a coherent scheme out of all available quasicrystals. However, we may notice that if we choose a polytope P we can, by suitably scaling P, arrive at a system

$$
\begin{equation*}
\Omega:=\left\{\Omega^{r}\right\}_{r>0} \tag{8.1}
\end{equation*}
$$

of quasicrystals and that the system is 'commensurable' with Σ in the sense that for all $s>0$ there are positive real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ so that

$$
\begin{equation*}
\Sigma^{r_{1}} \subset \Omega^{s} \subset \Sigma^{r_{2}} \quad \text { and } \quad \Omega^{r_{3}} \subset \Sigma^{s} \subset \Omega^{r_{4}} \tag{8.2}
\end{equation*}
$$

This suggests that we introduce the notion of a system of quasicrystals.
Let $M=\sum_{i=1}^{m} \mathbb{Z} a_{i}$ be a finitely generated subgroup of \mathbb{R}^{n} (in general $m>n$). Let G be a subgroup of $G L(N)$ that leaves M invariant. A subset Λ_{0} of M is a G-invariant M-quasilattice of M if Λ_{0} is G-invariant, discrete and uniform (uniform means that there is a real number $R>0$ such that every ball of radius R in \mathbb{R}^{n} intersects Λ_{0} non-trivially). By a system of G-invariant M-quasilattices we mean a set $\left\{\Lambda_{i}\right\}_{i \in J}$ of G-invariant quasilattices of M together with the partial ordering of inclusion satisfying
(i) for all $i, j \in J$ there exist $k, l \in J$ so that $\Lambda_{k} \subset \Lambda_{p} \subset \Lambda_{l}, p=i, j$;
(ii) $U_{i \in J} \Lambda_{i}=M, \cap_{i \in J} \Lambda_{i}=(0)$.

A second system of G-invariant M-quasilattices $\Lambda^{\prime}=\left\{\Lambda_{i^{\prime}}^{\prime} \mid i \in I^{\prime}\right\}$ is commensurable with Λ if for all $i \in I, i^{\prime} \in I^{\prime}$ there exist $j_{1}^{\prime}, j_{2}^{\prime} \in I^{\prime}, j_{1}, j_{2} \in I$ so that

$$
\Lambda_{j_{1}^{\prime}}^{\prime} \subset \Lambda_{i} \subset \Lambda_{j_{2}^{\prime}}^{\prime} \quad \Lambda_{j_{1}} \subset \Lambda_{i}^{\prime} \subset \Lambda_{j_{2}}
$$

Thus $\Sigma=\left\{\Sigma^{r} \mid r>0\right\}$ is a system of H_{4}-invariant \mathbb{I}-quasilattices and the choice of any acceptance domains $r P, r>0$, where P is some H_{4}-invariant polytope centred at the origin leads to a commensurable system.

A system of quasicrystals is a system of quasilattices in which each Λ_{i} is a quasicrystal. Unfortunately at the present time a suitable general definition of quasicrystals is elusive. Generally, it is believed that it should at least involve a statement about the Fourier transform of the set of points involved. We do not have anything to add to this question.

A symmetry of a quasilattice system Λ is a \mathbb{Z}-linear mapping ϕ on M that induces a mapping $\bar{\phi}$ on I so that $\phi \Lambda_{i}=\Lambda_{\bar{\phi}(i)}$ for all $i \in I$. Thus we have proved in section 7 that for our quasicrystal system Σ the symmetries comprise precisely the group generated by H_{4} and the inflations $\tau^{k}, k \in \mathbb{Z}$. If ϕ is a symmetry of Λ and Λ^{\prime} is commensurable with Λ then we can 'complete' Λ^{\prime} to a commensurable quasilattice $\Lambda^{\prime \prime}$ containing Λ^{\prime} that also has ϕ as a symmetry. In this way the symmetry group of a commensurable collection of systems of quasilattices is a well defined object.

In the rest of this section we discuss some specific subsystems of the E_{8} system.
First we consider the A_{4} quasicrystal system used for the examples in figures 2 and 3. For this we choose from figure 1 the subdiagram of the E_{8} simple roots $\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{8}$ spanning the A_{4} diagram and rename the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ respectively according to the standard A_{4} convention. Thus we have

$$
\begin{array}{ll}
\pi_{\|}\left(\alpha_{1}\right)=a_{3}=\frac{1}{2}(0,1,-\sigma,-\tau) & \pi_{\|}\left(\alpha_{2}\right)=\tau a_{4}=\frac{\tau}{2}(0,-1,-\sigma, \tau) \\
\pi_{\|}\left(\alpha_{3}\right)=\tau a_{3}=\frac{\tau}{2}(0,1,-\sigma,-\tau) & \pi_{\|}\left(\alpha_{4}\right)=a_{4}=\frac{1}{2}(0,-1,-\sigma, \tau) \tag{8.3}
\end{array}
$$

and also

$$
\begin{array}{lr}
\pi_{\perp}\left(\alpha_{1}\right)=a_{3}^{\prime}=\frac{1}{2}(0,1,-\tau,-\sigma) & \pi_{\perp}\left(\alpha_{2}\right)=\sigma a_{4}^{\prime}=\frac{\sigma}{2}(0,-1,-\tau, \sigma) \tag{8.4}\\
\pi_{\perp}\left(\alpha_{3}\right)=\sigma a_{3}^{\prime}=\frac{\sigma}{2}(0,1,-\tau,-\sigma) & \pi_{\perp}\left(\alpha_{4}\right)=a_{4}^{\prime}=\frac{1}{2}(0,-1,-\tau, \sigma) .
\end{array}
$$

The two-dimensional quasicrystal $\Sigma^{r} \cap\left(\mathbb{F} a_{3}+\mathbb{F} a_{4}\right)$ is then built for a given $r>0$ by repeating the following steps. One takes a point x in the A_{4}-root lattice,

$$
\begin{equation*}
x=x_{1} \alpha_{1}+x_{2} \alpha_{2}+x_{3} \alpha_{3}+x_{4} \alpha_{4} \quad x_{1}, \ldots, x_{4} \in \mathbb{Z} \tag{8.5}
\end{equation*}
$$

and its projection $\pi_{\perp}(x)$,

$$
\begin{gather*}
\pi_{\perp}(x)=x_{1} \pi_{\perp}\left(\alpha_{1}\right)+x_{2} \pi_{\perp}\left(\alpha_{2}\right)+x_{3} \pi_{\perp}\left(\alpha_{3}\right)+x_{4} \pi_{\perp}\left(\alpha_{4}\right) \\
=\left(x_{1}+\sigma x_{3}\right) a_{3}^{\prime}+\left(x_{4}+\sigma x_{2}\right) a_{4}^{\prime} . \tag{8.6}
\end{gather*}
$$

Then one selects the point

$$
\begin{equation*}
\pi_{1}(x)=\left(x_{1}+\tau x_{3}\right) a_{3}+\left(x_{4}+\tau x_{2}\right) a_{4} \tag{8.7}
\end{equation*}
$$

in the plane spanned by the unit quaternions a_{3} and a_{4} iff the quaternionic norm $N\left(\pi_{\perp}(x)\right)$ verifies the inequality

$$
\begin{equation*}
N\left(\pi_{\perp}(x)\right)<r^{2} . \tag{8.8}
\end{equation*}
$$

Note that the quatemionic nature of the basis vectors plays no role in the process of selection.
The symmetry group of the A_{4} system of quasicrystals induced from the symmetries of the E_{8} quasicrystal system is, according to (6.10), the group generated by the dihedral group

$$
\begin{equation*}
H_{2}:=\left\langle R_{3}, R_{4}\right\rangle \quad\left|H_{2}\right|=10 \tag{8.9}
\end{equation*}
$$

and the group of inflations $\langle\tau\rangle$.
Undoubtedly the most important subsystem of the E_{8} quasicrystal system is given by the D_{6} subdiagram

of the E_{8} diagram. It properly contains the two-dimensional A_{4} system discussed above. In the set-up of figure 1 , the six-dimensional root lattice of D_{6} is projected onto the threedimensional space of pure quaternions of \mathbb{I} as was already pointed out in section 5 .

Renumbering the E_{8} roots $\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{8}$, which span the D_{6} subdiagram, respectively as $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$, and choosing a value of $r>0$, we build a threedimensional quasicrystal $\Sigma^{0 r}$ point by point as before. Explicitly, a lattice point

$$
\begin{equation*}
x=x_{1} \alpha_{1}+\cdots+x_{6} \alpha_{6} \quad x_{1}, \ldots, x_{6} \in \mathbb{Z} \tag{8.11}
\end{equation*}
$$

of the D_{6} root lattice gives rise to the two projections:
$\pi_{\perp}(x)=x_{1} \pi_{\perp}\left(\alpha_{1}\right)+\cdots+x_{6} \pi_{\perp}\left(\alpha_{6}\right)=\left(x_{1}+\sigma x_{5}\right) a_{2}^{\prime}+\left(x_{2}+\sigma x_{4}\right) a_{3}^{\prime}+\left(x_{6}+\sigma x_{3}\right) a_{4}^{\prime}$
$\pi_{\|}(x)=x_{1} \pi_{\|}\left(\alpha_{1}\right)+\cdots+x_{6} \pi_{\|}\left(\alpha_{6}\right)=\left(x_{1}+\tau x_{5}\right) a_{2}+\left(x_{2}+\tau x_{4}\right) a_{3}+\left(x_{6}+\tau x_{3}\right) a_{4}$.

Whenever one has

$$
\begin{equation*}
N\left(\pi_{\perp}(x)\right)=\pi_{\perp}(x) \cdot \pi_{\perp}(x)<r^{2} \tag{8.14}
\end{equation*}
$$

the point (8.13) is selected in the 3 -space in which the pure quaternions a_{2}, a_{3}, a_{3} of figure 1 serve as basis vectors.

The induced symmetry group of the system of D_{6} quasicrystals is generated by the icosahedral group $H_{3}=\left\langle R_{2}, R_{3}, R_{4}\right\}$ of (6.20) and the inflations $\langle\tau\rangle$.

There are three other possible ways to cut a pair of vertically aligned nodes of the E_{8} diagram of figure 1. Each of them leads to a different subdiagram hence to a different qusicrystal system in 3-space. Here we specify each of the three cases by its symmetry group G and by the type of the subdiagram one gets. They are the following:

$$
\begin{array}{lll}
G:=\left\langle R_{1}, R_{3}, R_{4}\right\rangle & |G|=120 & 2 A_{1}+A_{4} \\
G:=\left\langle R_{1}, R_{2}, R_{4}\right\rangle, & |G|=12 & 2 A_{1}+2 A_{2} \\
G:=\left\langle R_{1}, R_{2}, R_{3}\right\rangle & |G|=24 & 2 A_{3} . \tag{8.17}
\end{array}
$$

The quasicrystals in these cases are built in the same way as above using the appropriate quaternions from among $a_{1}, a_{2}, a_{3}, a_{4}$ for basis vectors of the 3 -space.

Finally one may wish to see the best known of all quasicrystals: the one-dimensional one. Following our approach, we cut the E_{8} diagram of figure 1, removing from it all but one pair (any pair) of vertically aligned nodes. We are left with the $A_{1}+A_{1}$ diagram. Call the simple roots α and β. They project as
$\pi_{\|}(\alpha)=a \quad \pi_{\perp}(\alpha)=a^{\prime} \quad \pi_{\|}(\beta)=\tau a \quad \pi_{\perp}(\beta)=\sigma a^{\prime}$
where a is the icosian left in the cut diagram. For a fixed r, every point $x=$ $x_{1} \alpha+x_{2} \beta, x_{1}, x_{2} \in \mathbb{Z}$, of the $A_{1}+A_{1}$ lattice satisfying the inequality

$$
N\left(\left(x_{1}+\sigma x_{2}\right) a^{\prime}\right)=\left(x_{1}+\sigma x_{2}\right)^{2} a^{\prime} \bar{a}^{\prime}=\left(x_{1}+\sigma x_{2}\right)^{2}<r^{2}
$$

determines a point of the one-dimensional quasicrystal, namely the point

$$
\pi_{\|}(x)=\left(x_{1}+\tau x_{2}\right) a .
$$

The basis vector a is irrelevant for the one-dimensional problem. Indeed, the construction really takes place in $\mathbb{Z}[\tau]$ and the system of quasicrystals is

$$
\begin{equation*}
\Lambda^{r}:=\left\{x \in \mathbb{Z}[\tau]| | x^{\prime} \mid<r\right\} \tag{8.19}
\end{equation*}
$$

It is interesting to observe that there is a series of relative quasicrystals based on II which arise by altering the acceptance domain to a spherical shell: for $0<r<R$,

$$
\Sigma^{r, R}=\left\{x \in \mathbb{I}\left|r<\left|r^{\prime}\right|<R\right\}=\Sigma^{R} \backslash \hat{\Sigma}^{r} .\right.
$$

These sets retain the H_{4}-symmetry but lose the inflational symmetry.

9. Shelling quasicrystals

In [6] Sadoc and Mosseri introduce the notion of the shelling of quasicrystals and make a remarkable conjecture conceming the number of points on shells. In this section we describe the basic features of this process in the icosian setting.

The E_{8} root lattice Q decomposes into a set of concentric shells

$$
\begin{equation*}
Q_{N}:=\{x \in Q \mid(x \mid x)=2 N\} \quad N=0,1,2, \ldots \tag{9.1}
\end{equation*}
$$

This gives rise to the theta series

$$
\begin{equation*}
Q(q)=\sum_{x \in Q} q^{(x \mid x)}=\sum_{N=0}^{\infty} \operatorname{card}\left(Q_{N}\right) q^{2 N} \tag{9.2}
\end{equation*}
$$

for which there is the well known result [9]

$$
\begin{equation*}
\operatorname{card}\left(Q_{N}\right)=240\left(\sum_{d \mid N} d^{3}\right) \tag{9.3}
\end{equation*}
$$

We now introduce a shelling on each quasicrystal Σ^{r} : We set $\mathbb{I}_{N}:=\pi_{\|}\left(Q_{N}\right)$ (in other words Q_{N} is viewed in $\left.\mathbb{H}\right)$ and

$$
\begin{equation*}
\Sigma_{N}^{r}:=\Sigma^{r} \cap \mathbb{I}_{N}=\left\{x \in \mathbb{I}_{N}| | x^{\prime} \mid<r\right\} . \tag{9.4}
\end{equation*}
$$

For $x \in \mathbb{I}$ we have $x \in \Sigma_{N}^{r}$ if and only if

$$
\begin{align*}
& x \cdot x=N+m \tau \tag{9.5a}\\
& 0 \leqslant x^{\prime} \cdot x^{\prime}=N+m \sigma<r^{2} \tag{9.5b}
\end{align*}
$$

For some $m \in \mathbb{Z}$, from (9.5b) we have the equivalent condition

$$
\begin{equation*}
N \tau \geqslant m>\left(N-r^{2}\right) \tau \tag{9.5c}
\end{equation*}
$$

The inequality ($9.5 c$) is particularly interesting when $N \tau-\left(N-r^{2}\right) \tau=1$, i.e.

$$
\begin{equation*}
r=\frac{1}{\sqrt{\tau}}=: \rho . \tag{9.6}
\end{equation*}
$$

In this case we obtain

$$
\begin{equation*}
\Sigma_{N}^{p}=\{x \in \mathbb{I} \mid x \cdot x=N+[N \tau] \tau\} \quad N=0,1,2, \ldots \tag{9.7}
\end{equation*}
$$

where $[N \tau]$ is the integer part of $N \tau$.
Consider now the inflational symmetry

$$
x \mapsto \tau x
$$

that maps Σ^{ρ} bijectively onto $\Sigma^{\rho / \tau} \subset \Sigma^{\rho}$. We have

$$
\begin{aligned}
x \in \Sigma_{N}^{\rho} & \Rightarrow x \cdot x=N+[N \tau] \tau \\
& \Rightarrow \tau x \cdot \tau x=N(\tau+1)+[N \tau](2 \tau+1)=(N+[N \tau])+(N+2[N \tau]) \tau
\end{aligned}
$$

and hence, in view of (9.7),

$$
\begin{align*}
& \tau \Sigma_{N}^{\beta} \subset \Sigma_{N+[N \tau\rceil}^{p} \tag{9.8}\\
& {[(N+[N \tau]) \tau]=N+2[N \tau]} \tag{9.9}
\end{align*}
$$

This brings us to the Lucas sequences

$$
\begin{equation*}
\left\{L_{n}\right\}=\left\{g_{1} F_{n-1}+g_{2} F_{n}\right\}_{n=1}^{\infty} \tag{9.10}
\end{equation*}
$$

where $\left\{F_{n}\right\}_{0}^{\infty}=\{0,1,1,2,3,5, \ldots\}$ is the Fibonacci sequence and g_{1}, g_{2} are fixed natural numbers. Thus
$L_{1}=g_{2} \quad L_{2}=g_{1}+g_{2} \quad$ and $\quad L_{n+1}=L_{n}+L_{n-1}$.
Beginning with $g_{2}=N, g_{1}=[N \tau]-N$, where $N \in \mathbb{Z}_{+}$, we obtain the Lucas sequence

$$
\left\{L_{n}(N)\right\}=\{N,[N \tau], N+[N \tau], N+2[N \tau], \ldots\}
$$

By successive applications of (9.8), (9.9), and (9.7) we obtain for all odd n

$$
\begin{align*}
& \tau \Sigma_{L_{n}(N)}^{\rho} \subset \Sigma_{\Sigma_{n+2}(N)}^{\rho} \tag{9.12}\\
& x \in \Sigma_{L_{n}(N)}^{\rho} \Rightarrow x \cdot x=L_{n}(N)+L_{n+1}(N) \tau, \tag{9.13}\\
& L_{n+1}(N)=\left[\tau L_{n}(N)\right] . \tag{9.14}
\end{align*}
$$

Remarkably (9.12) is an equality:

$$
\begin{equation*}
\tau \Sigma_{L_{n}(N)}^{\rho}=\Sigma_{L_{n+2}(N)}^{\rho} \tag{9.15}
\end{equation*}
$$

Indeed, $x \in \Sigma_{L_{n+2}(N)}^{\rho} \Rightarrow x \cdot x=L_{n+2}(N)+L_{n+3}(N) \tau$, so that

$$
\sigma x \cdot \sigma x=(\sigma+1)\left(L_{n+2}(N)+\tau L_{n+3}(N)\right)=L_{n}(N)+\tau L_{n+1}(N)
$$

In view of (9.14) and (9.7), $\sigma x \in \Sigma_{L_{n}(N)}^{\rho}$ and so finally $x=-\tau(\sigma x) \in \tau \Sigma_{L_{n}(N)}^{\rho}$.
We define

$$
\begin{equation*}
s_{N}=\operatorname{card} \Sigma_{N}^{\rho} \quad N=0,1,2, \ldots \tag{9.16}
\end{equation*}
$$

In view of (9.15) we have for all N

$$
\begin{equation*}
s_{N}=s_{N+[N \tau]} \tag{9.17}
\end{equation*}
$$

We observe from (6.15) and (6.16) that each shell Σ_{N}^{ρ} has complete H_{4}-symmetry. In particular since left multiplication by elements of I acts without fixed points, each shell decomposes into I-orbits of 120 elements each. Consequently we have

$$
\begin{equation*}
120 \mid s_{N} \quad \text { for all } N \tag{9.18}
\end{equation*}
$$

In [11] an explicit formula for card Σ_{N}^{r} is given for all $N \in \mathbb{N}, r>0$. In particular for the case $r=\rho$ this for mula becomes

$$
\begin{equation*}
s_{N}=120 \sum_{b \mid N+[N \tau] \tau) \mathbb{Z}\{\tau]}(\mathbb{Z}[\tau]: b) . \tag{9.19}
\end{equation*}
$$

The sum runs over all right ideals of \mathbb{I} dividing $(N+[N \tau] \tau) \mathbb{Z}[\tau]$ and $(\mathbb{Z}[\tau]: \mathbf{b})$ is the index of \mathbf{b} as a subgroup of $\mathbb{Z}[\tau]$. Although throughout the present paper the ring structure of \mathbb{I} is not really used, the derivation of (9.19) and the more general formulas of [11] depend heavily on the fact that \mathbb{I} is a maximal order in $\mathbb{H}_{\mathbb{F}}$.

Our efforts to prove (9.19) were inspired by the conjectured formula (which is actually incorrect) in [6]. The first place where our formula differs from theirs is at $N=55$.

10. Concluding remarks

Results of this paper pertain to quasicrystals in dimensions $4,3,2$, and 1 . In the article we have exploited the unique position of the E_{8} root lattice in mathematics through its relation with the special set of quatemions, the icosians, and their relation with the quadratic extension \mathbb{F} of the rationals by $\sqrt{5}$. Generalization to other structures is possible but it is neither straightforward nor simple. However, the E_{8} playground set up here is large enough that practically all the interesting known quasiperiodic structures in physics, involving fivefold symmetry, can be found in it. In section 8 we have pointed out some of the possibilities.

In this article a quasicrystal is a set of points: projections of lattice points in double dimension. In the literature one is sometimes interested in quasiperiodic tilings. A quasicrystal is then viewed as a set of n-dimensional tiles in n dimensions, the important cases being $n=2,3$. For this we need to start from a tiling of the $2 n$-dimensional
space invariant under the corresponding Coxeter group W, and project appropriate faces of the tiles using π_{\perp} and $\pi_{\|}$from this paper. An explicit general description of tilings generated by Coxeter groups in Euclidean and other spaces for an arbitrary finite dimension recently became easy $[14,18]$. Moreover, the formalism here is ready-made for studying the quasiperiodic tilings in four (Euclidean) dimensions and their subsequent projections to any lower dimension.

The quasicrystals in this article 'live' in Euclidean spaces of dimensions up to 4 where certain unit quaternions (icosians) serve as basis vectors. As was illustrated in section 9, the quaternions not only offer considerable convenience in our construction but are crucial in understanding more subtle aspects of the theory.

Appendix. The icosian ring as a lattice

In this section we provide an explicit description in terms of coordinates of \mathbb{I} as a lattice in \mathbb{R}^{4}.

The icosian ring \mathbb{I} is the additive group generated by the three sets of elements (3.1). The first set of points generates \mathbb{Z}^{4}. Adjoining to it the second set we obtain

$$
L_{4}:=\left\{\left(a_{1}, \ldots, a_{4}\right) \mid a_{i} \in \mathbb{Z} \quad \text { for all } i \text { or } a_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i\right\}
$$

the index $\left[L_{4}: \mathbb{Z}^{4}\right]=2$, and L_{4} / \mathbb{Z}^{4} is generated by the icosian $\frac{1}{2}(1,1,1,1)$.
Since $\tau \mathbb{I} \subset \mathbb{I}$, we obtain

$$
L_{4}+\tau L_{4}=\left\{a+\tau b \mid a, b \in L_{4}\right\} \subset \mathbb{I} .
$$

Now consider $\frac{1}{2}(0,1, \sigma, \tau)=\frac{1}{2}(0,1,1-\tau, \tau)=\frac{1}{2}(0,1,1,0)+\frac{1}{2} \tau(0,0,-1,1)$. Define

$$
\hat{L}_{4}=\left\{\left(a_{1}, \ldots, a_{4}\right) \left\lvert\, a_{i} \in \mathbb{Z} \cup\left(\mathbb{Z}+\frac{1}{2}\right)\right., \text { card }\left\{i \mid a_{i} \in \mathbb{Z} \text { is even }\right\}\right\}
$$

Let us show that $\hat{L}_{4} / L_{4} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Set

$$
a:=\frac{1}{2}(1,1,0,0) \quad b:=\frac{1}{2}(0,1,1,0) \quad c:=\frac{1}{2}(1,0,1,0) .
$$

If $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \hat{L}_{4} \backslash L_{4}$ then exactly two of the x_{i} lie in $\mathbb{Z}+\frac{1}{2}$. Since $\frac{1}{2}(1,1,1,1) \in L_{4}$,

$$
\begin{aligned}
a & \equiv-a \equiv-a+\frac{1}{2}(1,1,1,1)=\frac{1}{2}(0,0,1,1) \bmod L_{4} \\
b & \equiv \frac{1}{2}(1,0,0,1) \bmod L_{4} \\
c & \equiv \frac{1}{2}(0,1,0,1) \bmod L_{4} .
\end{aligned}
$$

Together with $0=\frac{1}{2}(0,0,0,0)$ this covers all possibilities for \hat{L}_{4} / L_{4}. Thus

$$
\hat{L}_{4}=L_{4}+\left(a+L_{4}\right)+\left(b+L_{4}\right)+\left(c+L_{4}\right)
$$

and $\hat{L}_{4} / L_{4} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Now consider the action of the symmetric group S_{4} on \hat{L}_{4} determined by permuting components. Then L_{4} is an S_{4} invariant subspace. Hence S_{4} acts on \hat{L}_{4} / L_{4}.

Let $K=\{1$, (12)(34), (13)(24), (14)(23)\},

$$
K \triangleleft S_{4} \quad S_{4} / K \simeq S_{3}
$$

We have

$$
\begin{aligned}
& (12)(34) a=a \\
& (13)(24) a=\frac{1}{2}(0,0,1,1) \equiv a \bmod L_{4} \\
& (12)(34) a=\frac{1}{2}(0,0,1,1) \equiv a \bmod L_{4} .
\end{aligned}
$$

The same happens for b, c. Thus K acts trivially on \hat{L}_{4} / L_{4} and we get an action of S_{3} on \hat{L}_{4} / L_{4} from $S_{4} / K \simeq S_{3}$.

The two non-trivial elements of A_{3} are (123) and (132),

$$
\begin{aligned}
& (123) a=(123) \frac{1}{2}(1,1,0,0)=\frac{1}{2}(0,1,1,0)=b \\
& (123) b=(123) \frac{1}{2}(0,1,1,0)=\frac{1}{2}(1,0,1,0)=c \\
& (123) c=a
\end{aligned}
$$

We can now determine \mathbb{I} : we know that

$$
\hat{L}_{4}+\tau \hat{L}_{4} \supset \mathbb{H} \supset L_{4}+\tau L_{4} \quad \text { and } \quad\left[\hat{L}_{4}+\tau \hat{L}_{4}: L_{4}+\tau L_{4}\right]=16
$$

We claim that

$$
\mathbb{I}=\mathbb{J}:=\left\{x+\tau y \mid x, y \in \hat{L}_{4},(123) y \equiv x \bmod L_{4}\right\}
$$

It is immediate from the definition that \mathbb{J} is a group and $L_{4}+\tau L_{4} \subset \mathbb{J}$. Furthermore, since for $x+y \tau \in J$ the value of $x \bmod L_{4}$ is determined by y and $\left[\hat{L}_{4}: L_{4}\right]=4$, we see that $\left[\mathbb{J}: L_{4}+\tau L_{4}\right]=4$. Now the generators of \mathbb{I} all lie in \mathbb{J} and hence $\mathbb{I} \subset \mathbb{J}$. Finally it is clear that $\left\{y \mid x+y \tau \in \mathbb{I}, x, y \in \hat{L}_{4}\right\}$ is precisely \hat{L}_{4} and so $\mathbb{I} /\left(L_{4}+\tau L_{4}\right)=\mathbb{J} /\left(L_{4}+\tau L_{4}\right)$, whence $\mathbb{I}=\mathbb{J}$.

Acknowledgment

The work was supported in part by the Natural Sciences and Engineering Research Council of Canada (RVM and JP), by the Fonds FCAR of Quebec, and by the Killam Research Foundation (JP).

References

[1] Guyot P, Kramer P and de Boissieu M 1989 Quasicrystals Rep. Prog. Phys. 79 1373-425
[2] Baake P, Kramer P, Schlottmann M and Zeidler D 1990 Planar patterns with fivefold symmetry as sctions of periodic structures in 4-space Int. J. Mod. Phys. B 2217-68
[3] Baake M, Joseph D, Kramer P and Schlottmann M 1990 Root lattices and quasicrystals J. Phys, A: Math. Gen. 23 L1037-41
[4] Kramer P, Papadopolos Z and Zeidier D 1992 Concepts of symmetry in quasicrystals: root lattice D_{6}, icosahedral group, etc ... Group Theory in Physics (AIP Conference Proc.) 266 179-200
[5] Elser V and Sloane N J A 1987 A highly symmetric four-dimensional quasicrystal J. Phys. A: Math. Gen. 206161
[6] Sadoc'J F and Mosseri R 1992 The E_{8} lattice and quasicrystals: geometry, number theory, and quasicrystals J. Phys. A: Math. Gen. to be published
[7] Sadoc J F and Mosseri R 1993 The E8 lattice and quasicrystals J. Non-crystaline Solids 153, 154 247-52
[8] Scherbak O P 1988 Wavefronts and reflection groups Russ. Math. Surveys 43: 3 149-94
[9] Witt E 1941 Spiegelungsgruppen und aufzählung halbeinfacher Liescher ringe Abh. Math. Sem. Univ. Hamburg 14 289-322
[10] Tits J 1980 Quatemions over $Q(\sqrt{5})$, Leech lattice and the sporadic group of Hall-Janko J. Algebra 63 56-75
[11] Moody R V and Weiss A, The shelling of E_{8} quasicrystals, in preparation
[12] du Val P 1964 Homographies, Quaternions and Rotations (Oxford: Oxford University. Press)
[13] Moody R V, Patera J and Rand D 1992 simpLie (Macintosh computer software v2) Centre de Recherches Mathématiques, Université de Montréal
[14] Moody R V and Patera J 1992 Voronoi and Delaunay cells of root lattices: Classification of their faces and facets by Coxeter-Dynkin diagrams J. Phys. A: Math. Gen. 25 5089-134
[15] Coxeter H M S and Moser W O J 1965 Generators and relations for discrete groups Ergebnisse der Mathematik 2nd edn (New York: Springer)
[16] Deodhar V V 1982 On root systems of a Coxeter group Commun. Algebra 10 611-30
[17] Humphreys J E 1990 Reflection Groups and Coxeter Groups (Cambridge: Cambridge University Press)
[18] Moody R V and Patera J 1992 Voronoi domains and dual cells in the generalized kaleidoscope with application to root and weight lattices Preprint CRM-1803 pp 1-49

